Log in

BdASR5 Positively Regulates Drought Tolerance by Mediating ABA Signaling Pathway in Brachypodium distachyon

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Abscisic acid-, stress-, and ripening-induced (ASR) proteins are involved in response to abiotic stresses. However, the precise role of Brachypodium ASR genes in enhancing tolerance under drought stress conditions remains to be determined. In this study, we characterized the BdASR5 gene and determined that it has a function in drought stress tolerance. Overexpression of BdASR5 confers tolerance to drought stress in Brachypodium. Overexpression of BdASR5 resulted in higher relative water content and chlorophyll content, and lower ion leakage than WT plants under drought stress conditions. Moreover, overexpression of BdASR5 displayed increased antioxidant enzyme activity and upregulated expression of ROS-related, stress-related, and ABA-dependent pathway genes under drought stress condition. In addition, overexpression of BdASR5 showed hypersensitive to exogenous ABA at the germination stage. Moreover, overexpression of BdASR5 showed increased stomatal closure and decreased stomata conductance under ABA conditions. Collectively, these results suggest that BdASR5 functions as a positive regulator in response to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Barrs H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15(3):413–428

    Article  Google Scholar 

  • Bradford MMJAb, (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  Google Scholar 

  • Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020) Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62(1):25–54

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17(12):3470–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Hu HH, **ong LZ (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y (2013) TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ 36(8):1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Iusem ND, Bartholomew DM, Hitz WD, Scolnik PA (1993) Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripening. Plant Physiol 102(4):1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DY, Hong MJ, Park C-S, Seo YW (2015) The effects of chronic radiation of gamma ray on protein expression and oxidative stress in Brachypodium distachyon. Int J Radiat Biol 91(5):407–419

    Article  CAS  PubMed  Google Scholar 

  • Lee S-C, Han S-K, Kim S-R (2015) Salt-and ABA-inducible OsGASR1 is involved in salt tolerance. J Plant Biol 58(2):96–101

    Article  CAS  Google Scholar 

  • Li J, Dong Y, Li C, Pan Y, Yu J (2016) SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants. Front Plant Sci 7:2053

    PubMed  Google Scholar 

  • Li JJ, Li Y, Yin ZG, Jiang JH, Zhang MH, Guo X, Ye ZJ, Zhao Y, **ong HY, Zhang ZY, Shao YJ, Jiang CH, Zhang HL, An GH, Paek NC, Ali J, Li ZC (2017) OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice. Plant Biotechnol J 15(2):183–196

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Baek W, Jung J, Kim J-H, Lee SC (2015) Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci 16(7):15251–15270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo LJ (2010) Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot 61(13):3509–3517

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Park SI, Kim JJ, Shin SY, Kim YS, Yoon HS (2020) ASR enhances environmental stress tolerance and improves grain yield by modulating stomatal closure in rice. Front Plant Sci 10:1752

    Article  PubMed  PubMed Central  Google Scholar 

  • Parrilla J, Medici A, Gaillard C, Verbeke J, Gibon Y, Rolin D, Laloi M, Finkelstein RR, Atanassova R (2022) Grape ASR regulates glucose transport, metabolism and signaling. Int J Mol Sci 23(11):6194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu D, Hu W, Zhou Y, **ao J, Hu R, Wei Q, Zhang Y, Feng J, Sun F, Sun J (2021) TaASR1-D confers abiotic stress resistance by affecting ROS accumulation and ABA signalling in transgenic wheat. Plant Biotechnol J 19(8):1588–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava D, Verma G, Chawda K, Chauhan AS, Pande V, Chakrabarty D (2022) Overexpression of Asr6, abscisic acid stress-ripening protein, enhances drought tolerance and modulates gene expression in rice (Oryza sativa L.). Environ Exp Bot 202:105005

    Article  CAS  Google Scholar 

  • Sun J, Hu W, Zhou R, Wang L, Wang X, Wang Q, Feng Z, Li Y, Qiu D, He G (2015) The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. Plant Cell Rep 34:23–35

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA Responses: sensing. Signal Transp Plant Cell Physiol 51(11):1821–1839

    Article  CAS  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Hu W, Feng J, Yang X, Huang Q, **ao J, Liu Y, Yang G, He G (2016) Identification of the ASR gene family from Brachypodium distachyon and functional characterization of BdASR1 in response to drought stress. Plant Cell Rep 35(6):1221–1234

    Article  CAS  PubMed  Google Scholar 

  • Warren C (2008) Rapid measurement of chlorophylls with a microplate reader. J Plant Nutr 31:1321–1332

    Article  CAS  Google Scholar 

  • Wu M, Liu R, Gao Y, **ong R, Shi Y, **ang Y (2020) PheASR2, a novel stress-responsive transcription factor from moso bamboo (Phyllostachys edulis), enhances drought tolerance in transgenic rice via increased sensitivity to abscisic acid. Plant Physio Biochem 154:184–194

    Article  CAS  Google Scholar 

  • Wu XM, Gao RX, Mao RJ, Lin Y, Yang ZM, Li J, Cao FX, Li M (2022) Inducing bract-like leaves in Arabidopsis through ectopically expressing an ASR gene from the dove tree. Ind Crop Prod 180:114796

    Article  CAS  Google Scholar 

  • Yacoubi I, Gadaleta A, Mathlouthi N, Hamdi K, Giancaspro A (2022) Abscisic acid-stress-ripening genes involved in plant response to high salinity and water deficit in durum and common wheat. Front Plant Sci 13:789701

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye H, Liu S, Tang B, Chen J, **e Z, Nolan TM, Jiang H, Guo H, Lin H-Y, Li L (2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun 8(1):14573

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon JS, Kim JY, Lee MB, Seo YW (2019) Over-expression of the Brachypodium ASR gene BdASR4 enhances drought tolerance in Brachypodium distachyon. Plant Cell Rep 38(9):1109–1125

    Article  CAS  PubMed  Google Scholar 

  • Yoon JS, Kim JY, Kim DY, Seo YW (2021) A novel wheat ASR gene, TaASR2D, enhances drought tolerance in Brachypodium distachyon. Plant Physiol Biochem 159:400–414

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Christmann A, Yamaguchi-Shinozaki K, Grill E, Fernie AR (2019) Revisiting the basal role of ABA—roles outside of stress. Trends Plant Sci 24(7):625–635

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Li N, Gao F, Yang A, Zhang J (2010) Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breed 26:455–465

    Article  CAS  Google Scholar 

  • Zhang Q, Liu YQ, Jiang YL, Li AQ, Cheng BJ, Wu JD (2022) OsASR6 enhances salt stress tolerance in rice. Int J Mol Sci 23(16):9340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Yi X, Qiao X, Tang Y, Xu Z, Liu S, Zhang S (2021) Genome-wide identification and comparative analysis of the ASR gene family in the rosaceae and expression analysis of PbrASRs during fruit development. Front Genet 12:792250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A1A01053494) and partly by a grant from the Ojeong Plant Breeding Research Center of Korea University, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

JSY, DP and YWS: conceived and designed the study. JSY and DP: performed the experiments, analyzed the data, and wrote the manuscript with support from YWS. YWS contributed to the valuable discussions. All authors discussed the results and approved the final manuscript.

Corresponding author

Correspondence to Yong Weon Seo.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, J.S., Prasad, D. & Seo, Y.W. BdASR5 Positively Regulates Drought Tolerance by Mediating ABA Signaling Pathway in Brachypodium distachyon. J. Plant Biol. 67, 25–33 (2024). https://doi.org/10.1007/s12374-023-09411-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-023-09411-7

Keywords

Navigation