Log in

Trait Improvement of Solanaceae Fruit Crops for Vertical Farming by Genome Editing

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Currently, science and technology are continuously evolving by convergence with each other. In agriculture, new concepts such as smart farm, vertical farming, and urban agriculture have emerged beyond the traditional form. Among the various types of smart farms, vertical farms are considered one of the most advanced forms of agriculture, and research and related industries are rapidly increasing. However, vertical farming has several limitations. The biggest problem is that the types of crops grown within this system are extremely limited. Industrially, only minimal crops are cultivated, and a significant number of many crops are rarely attempted due to cultural or economic limitations. This is especially the case with fruit crops because the innate form and various traits of fruit crops are not suitable for vertical farming. Therefore, this review will discuss the attributes of which fruit crops need to be improved to be grown on vertical farms. Finally, we show how the latest biotechnology and breeding techniques can enable the fast and accurate development of crops tailored to vertical farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmar S, Gill RA, Jung K-H, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21:2590

    Article  CAS  Google Scholar 

  • Ahmar S, Mahmood T, Fiaz S, Mora-Poblete F, Shafique MS, Chattha MS, Jung K-H (2021) Advantage of nanotechnology-based genome editing system and its application in crop improvement. Front Plant Sci 12:663849

    Article  Google Scholar 

  • Al-Kodmany K (2018) The vertical farm: a review of developments and implications for the vertical city. Buildings 8:24

    Article  Google Scholar 

  • Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7:524–536

    Article  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  Google Scholar 

  • Altieri MA, Nicholls CI, Henao A, Lana MA (2015) Agroecology and the design of climate change-resilient farming systems. Agron Sustain Dev 35:869–890

    Article  Google Scholar 

  • Anami S, Njuguna E, Coussens G, Aesaert S, Lijsebettens MV (2013) Higher plant transformation: principles and molecular tools. Int J Dev Biol 57:483–494

    Article  CAS  Google Scholar 

  • Anjanappa RB, Gruissem W (2021) Current progress and challenges in crop genetic transformation. J Plant Physiol 261:153411

    Article  CAS  Google Scholar 

  • Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38:824–844

    Article  CAS  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157

    Article  CAS  Google Scholar 

  • Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE (2018) Translating high-throughput phenoty** into genetic gain. Trends Plant Sci 23:451–466

    Article  CAS  Google Scholar 

  • Ares G, Ha B, Jaeger SR (2021) Consumer attitudes to vertical farming (indoor plant factory with artificial lighting) in China, Singapore, UK, and USA: a multi-method study. Food Res Int 150:110811

    Article  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: Recent advances. Biotechnol Adv 28:169–183

    Article  CAS  Google Scholar 

  • Asseng S, Guarin JR, Raman M, Monje O, Kiss G, Despommier DD, Meggers FM, Gauthier PPG (2020) Wheat yield potential in controlled-environment vertical farms. Proc Natl Acad Sci 117:19131–19135

    Article  CAS  Google Scholar 

  • Aulakh MS, Malhi SS (2005) Interactions of nitrogen with other nutrients and water: effect on crop yield and quality, nutrient use efficiency, carbon sequestration, and environmental pollution. Adv Agron 86:341–409

    Article  CAS  Google Scholar 

  • Bac CW, van Henten EJ, Hemming J, Edan Y (2014) Harvesting robots for high-value crops: state-of-the-art review and challenges ahead. J Field Robot 31:888–911

    Article  Google Scholar 

  • Banerjee C, Adenaeuer L (2014) Up, up and away! The economics of vertical farming. J Agric Stud 2:40–60

    Google Scholar 

  • Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new reference. Nat Plants 6:914–920

    Article  Google Scholar 

  • Beacham AM, Vickers LH, Monaghan JM (2019) Vertical farming: a summary of approaches to growing skywards. J Hortic Sci Biotechnol 94:277–283

    Article  Google Scholar 

  • Beaver JS, Osorno JM (2009) Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168:145–175

    Article  CAS  Google Scholar 

  • Bechar A, Vigneault C (2016) Agricultural robots for field operations: concepts and components. Biosyst Eng 149:94–111

    Article  Google Scholar 

  • Beckles DM (2012) Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 63:129–140

    Article  CAS  Google Scholar 

  • Ben-Cheikh W, Perez-Botella J, Tadeo FR, Talon M, Primo-Millo E (1997) Pollination increases gibberellin levels in develo** ovaries of seeded varieties of citrus. Plant Physiol 114:557–564

    Article  CAS  Google Scholar 

  • Benke K, Tomkins B (2017) Future food-production systems: vertical farming and controlled-environment agriculture. Sustain Sci Pract Policy 13:13–26

    Google Scholar 

  • Birch RG (1997) PLANT transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  Google Scholar 

  • Bogue R (2020) Fruit picking robots: has their time come? Ind Robot Int J Robot Res Appl 47:141–145

    Article  Google Scholar 

  • Byeon GW, Cenik ES, Jiang L, Tang H, Das R, Barna M (2021) Functional and structural basis of extreme conservation in vertebrate 5′ untranslated regions. Nat Genet 53:729–741

    Article  CAS  Google Scholar 

  • Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222

    CAS  Google Scholar 

  • Chen K-E, Chen H-Y, Tseng C-S, Tsay Y-F (2020) Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nat Plants 6:1126–1135

    Article  CAS  Google Scholar 

  • Chen L, Hao L, Parry MAJ, Phillips AL, Hu Y-G (2014) Progress in TILLING as a tool for functional genomics and improvement of crops. J Integr Plant Biol 56:425–443

    Article  Google Scholar 

  • Cho SW, Kim S, Kim JM, Kim J-S (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  CAS  Google Scholar 

  • Collantes JC, Tan VM, Xu H, Ruiz-Urigüen M, Alasadi A, Guo J, Tao H, Su C, Tyc KM, Selmi T, Lambourne JJ, Harbottle JA, Stombaugh J, **ng J, Wiggins CM, ** S (2021) Development and characterization of a modular CRISPR and RNA aptamer mediated base editing system. CRISPR J 4:58–68

    Article  CAS  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  • Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P (2015) A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci 112:11205–11210

    Article  CAS  Google Scholar 

  • Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A (2022) Pathways to de novo domestication of crop wild relatives. Plant Physiol 188:1746–1756

    Article  CAS  Google Scholar 

  • Darko E, Heydarizadeh P, Schoefs B, Sabzalian MR (2014) Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philos Trans R Soc B Biol Sci 369:20130243

    Article  Google Scholar 

  • DeHaan L, Larson S, López-Marqués RL, Wenkel S, Gao C, Palmgren M (2020) Roadmap for accelerated domestication of an emerging perennial grain crop. Trends Plant Sci 25:525–537

    Article  CAS  Google Scholar 

  • Della Coletta R, Qiu Y, Ou S, Hufford MB, Hirsch CN (2021) How the pan-genome is changing crop genomics and improvement. Genome Biol 22:3

    Article  Google Scholar 

  • Despommier D (2013) Farming up the city: the rise of urban vertical farms. Trends Biotechnol 31:388–389

    Article  CAS  Google Scholar 

  • Duan J, Wu Y, Zhou Y, Ren X, Shao Y, Feng W, Zhu Y, He L, Guo T (2018) Approach to higher wheat yield in the Huang-Huai plain: improving post-anthesis productivity to increase harvest index. Front Plant Sci 9:1457

    Article  Google Scholar 

  • Ebler J, Ebert P, Clarke WE, Rausch T, Audano PA, Houwaart T, Mao Y, Korbel JO, Eichler EE, Zody MC, Dilthey AT, Marschall T (2022) Pangenome-based genome inference allows efficient and accurate genoty** across a wide spectrum of variant classes. Nat Genet 54:518–525

    Article  CAS  Google Scholar 

  • Edmondson JL, Cunningham H, Densley Tingley DO, Dobson MC, Grafius DR, Leake JR, McHugh N, Nickles J, Phoenix GK, Ryan AJ, Stovin V, Taylor Buck N, Warren PH, Cameron DD (2020) The hidden potential of urban horticulture. Nat Food 1:155–159

    Article  Google Scholar 

  • Elitzur T, Nahum H, Borovsky Y, Pekker I, Eshed Y, Paran I (2009) Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING. J Exp Bot 60:869–880

    Article  CAS  Google Scholar 

  • Eshed Y, Lippman ZB (2019) Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366:eaax0025

    Article  CAS  Google Scholar 

  • Esteso A, Alemany M, Ortiz Á, Iannacone R (2022) Crop planting and harvesting planning: conceptual framework and sustainable multi-objective optimization for plants with variable molecule concentrations and minimum time between harvests. Appl Math Model 112:136–155

    Article  Google Scholar 

  • Eyles A, Close DC, Quarrell SR, Allen GR, Spurr CJ, Barry KM, Whiting MD, Gracie AJ (2022) Feasibility of mechanical pollination in tree fruit and nut crops: a review. Agronomy 12:1113

    Article  CAS  Google Scholar 

  • Fageria NK, Moreira A (2011) Chapter four - the role of mineral nutrition on root growth of crop plants. Adv Agron 110:251–331

    Article  CAS  Google Scholar 

  • Felicia WXL, Rovina K, Nur’Aqilah MN, Vonnie JM, Erna KH, Misson M, Halid NFA (2022) Recent advancements of polysaccharides to enhance quality and delay ripening of fresh produce: a review. Polymers 14:1341

    Article  CAS  Google Scholar 

  • Fernandes L, Saraiva JA, Pereira JA, Casal S, Ramalhosa E (2019) Post-harvest technologies applied to edible flowers: a review. Food Rev Int 35:132–154

    Article  CAS  Google Scholar 

  • Fernie AR, Yan J (2019) De Novo domestication: an alternative route toward new crops for the future. Mol Plant 12:615–631

    Article  CAS  Google Scholar 

  • Fess TL, Kotcon JB, Benedito VA (2011) Crop breeding for low input agriculture: a sustainable response to feed a growing world population. Sustainability 3:1742–1772

    Article  Google Scholar 

  • Fussy A, Papenbrock J (2022) An overview of soil and soilless cultivation techniques—chances, challenges and the neglected question of sustainability. Plants 11:1153

    Article  CAS  Google Scholar 

  • Gao C (2021) Genome engineering for crop improvement and future agriculture. Cell 184:1621–1635

    Article  CAS  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109:E2579–E2586

    Article  CAS  Google Scholar 

  • Gaston A, Osorio S, Denoyes B, Rothan C (2020) Applying the Solanaceae strategies to strawberry crop improvement. Trends Plant Sci 25:130–140

    Article  CAS  Google Scholar 

  • Gelvin SB (2003a) Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  Google Scholar 

  • Gelvin SB (2003b) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98

    Article  CAS  Google Scholar 

  • Gómez MI, Barrett CB, Raney T, Pinstrup-Andersen P, Meerman J, Croppenstedt A, Carisma B, Thompson B (2013) Post-green revolution food systems and the triple burden of malnutrition. Food Policy 42:129–138

    Article  Google Scholar 

  • Guo W, Chen L, Herrera-Estrella L, Cao D, Tran L-SP (2020) Altering plant architecture to improve performance and resistance. Trends Plant Sci 25:1154–1170

    Article  CAS  Google Scholar 

  • Gupta A, Beaudoin J-D (2021) Extreme conservation encodes the structural dynamics and function of 5′ UTRs. Nat Genet 53:591–592

    Article  CAS  Google Scholar 

  • Gupta M, Abdelsalam M, Khorsandroo S, Mittal S (2020) Security and privacy in smart farming: challenges and opportunities. IEEE Access 8:34564–34584

    Article  Google Scholar 

  • Gupta PK (2021) Quantitative genetics: pan-genomes, SVs, and k-mers for GWAS. Trends Genet 37:868–871

    Article  CAS  Google Scholar 

  • Gupta S, Kumar A, Patel R, Kumar V (2021) Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach. Mol Biol Rep 48:4851–4863

    Article  CAS  Google Scholar 

  • Hajheidari M, Huang SC (2022) Elucidating the biology of transcription factor–DNA interaction for accurate identification of cis-regulatory elements. Curr Opin Plant Biol 68:102232

    Article  CAS  Google Scholar 

  • Hamada H, Liu Y, Nagira Y, Miki R, Taoka N, Imai R (2018) Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Sci Rep 8:14422

    Article  Google Scholar 

  • Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MdA, Ashkani S, Malek MdA, Latif MA (2015) Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol Biotechnol Equip 29:237–254

    Article  Google Scholar 

  • Hawkesford MJ (2014) Reducing the reliance on nitrogen fertilizer for wheat production. J Cereal Sci 59:276–283

    Article  CAS  Google Scholar 

  • He J, Qin L, Chow WS (2019) Impacts of LED spectral quality on leafy vegetables: productivity closely linked to photosynthetic performance or associated with leaf traits? Int J Agric Biol Eng 12:16–25

    Google Scholar 

  • Hendelman A, Zebell S, Rodriguez-Leal D, Dukler N, Robitaille G, Wu X, Kostyun J, Tal L, Wang P, Bartlett ME, Eshed Y, Efroni I, Lippman ZB (2021) Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection. Cell 184:1724–1739

    Article  CAS  Google Scholar 

  • Herman RA, Ayepa E, Fometu SS, Shittu S, Davids JS, Wang J (2022) Mulberry fruit post-harvest management: techniques, composition and influence on quality traits -a review. Food Control 140:109126

    Article  CAS  Google Scholar 

  • Hickey LT, Hafeez A, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  Google Scholar 

  • Hirel B, Tétu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485

    Article  CAS  Google Scholar 

  • Hoad SP, Russell G, Lucas ME, Bingham IJ (2001) The management of wheat, barley, and oat root systems. Adv Agron 74:193–246

    Article  CAS  Google Scholar 

  • Holme IB, Gregersen PL, Brinch-Pedersen H (2019) Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Front Plant Sci 10:1468

    Article  Google Scholar 

  • Hopp HE, Spangenberg G, Herrera-Estrella L (2022) Editorial: plant transformation. Front Plant Sci 13:876671

    Article  Google Scholar 

  • Horton JS, Flanagan LM, Jackson RW, Priest NK, Taylor TB (2021) A mutational hotspot that determines highly repeatable evolution can be built and broken by silent genetic changes. Nat Commun 12:6092

    Article  CAS  Google Scholar 

  • Hou L, Gao W, der Bom F, Weng Z, Doolette CL, Maksimenko A, Hausermann D, Zheng Y, Tang C, Lombi E, Kopittke PM (2022) Use of X-ray tomography for examining root architecture in soils. Geoderma 405:115405

    Article  Google Scholar 

  • Howden SM, Soussana J-F, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. Proc Natl Acad Sci 104:19691–19696

    Article  CAS  Google Scholar 

  • Huett DO (1996) Prospects for manipulating the vegetative-reproductive balance in horticultural crops through nitrogen nutrition: a review. Aust J Agric Res 47:47–66

    Article  Google Scholar 

  • Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, Starker CG, Bart R, Voytas DF, Taylor NJ (2018) Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J 16:1275–1282

    Article  CAS  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh J-RJ, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  Google Scholar 

  • Idoje G, Dagiuklas T, Iqbal M (2021) Survey for smart farming technologies: challenges and issues. Comput Electr Eng 92:107104

    Article  Google Scholar 

  • Jaeger SR, Chheang SL, Ares G (2022) Text highlighting as a new way of measuring consumers’ attitudes: a case study on vertical farming. Food Qual Prefer 95:104356

    Article  Google Scholar 

  • Jägermeyr J, Müller C, Ruane AC, Elliott J, Balkovic J, Castillo O, Faye B, Foster I, Folberth C, Franke JA, Fuchs K, Guarin JR, Heinke J, Hoogenboom G, Iizumi T, Jain AK, Kelly D, Khabarov N, Lange S, Lin T-S, Liu W, Mialyk O, Minoli S, Moyer EJ, Okada M, Phillips M, Porter C, Rabin SS, Scheer C, Schneider JM, Schyns JF, Skalsky R, Smerald A, Stella T, Stephens H, Webber H, Zabel F, Rosenzweig C (2021) Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat Food 2:873–885

    Article  Google Scholar 

  • Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    Article  CAS  Google Scholar 

  • Janssen BJ, Drummond RS, Snowden KC (2014) Regulation of axillary shoot development. Curr Opin Plant Biol 17:28–35

    Article  Google Scholar 

  • Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang X-Q, Angessa TT, Zhou G, Tan C, Hill C, Wang P, Schreiber M, Boston LB, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D, Zhang J, Wang C, Grimwood J, Schmutz J, Guo G, Zhang G, Mochida K, Hirayama T, Sato K, Chalmers KJ, Langridge P, Waugh R, Pozniak CJ, Scholz U, Mayer KFX, Spannagl M, Li C, Mascher M, Stein N (2020) The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588:284–289

    Article  CAS  Google Scholar 

  • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  CAS  Google Scholar 

  • **ek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  • Jones RA, Scott SJ (1983) Improvement of tomato flavor by genetically increasing sugar and acid contents. Euphytica 32:845–855

    Article  Google Scholar 

  • Jupe F, Rivkin AC, Michael TP, Zander M, Motley ST, Sandoval JP, Slotkin RK, Chen H, Castanon R, Nery JR, Ecker JR (2019) The complex architecture and epigenomic impact of plant T-DNA insertions. PLOS Genet 15:e1007819

    Article  Google Scholar 

  • Jürkenbeck K, Heumann A, Spiller A (2019) Sustainability matters: consumer acceptance of different vertical farming systems. Sustainability 11:4052

    Article  Google Scholar 

  • Karunarathna NL, Patiranage DSR, Harloff H-J, Sashidhar N, Jung C (2021) Genomic background selection to reduce the mutation load after random mutagenesis. Sci Rep 11:19404

    Article  CAS  Google Scholar 

  • Khan AW, Garg V, Roorkiwal M, Golicz AA, Edwards D, Varshney RK (2020) Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci 25:148–158

    Article  CAS  Google Scholar 

  • Kim DH, Han MS, Cho HW, Jo YD, Cho MC, Kim B-D (2006) Molecular cloning of a pepper gene that is homologous to SELF-PRUNING. Mol Cells 22:89–96

    CAS  Google Scholar 

  • Kim S-R, Lee J, Jun S-H, Park S, Kang H-G, Kwon S, An G (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52:761–773

    Article  CAS  Google Scholar 

  • Klee HJ (2010) Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytol 187:44–56

    Article  CAS  Google Scholar 

  • Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42:459–463

    Article  CAS  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  CAS  Google Scholar 

  • Kulak M, Graves A, Chatterton J (2013) Reducing greenhouse gas emissions with urban agriculture: a life cycle assessment perspective. Landsc Urban Plan 111:68–78

    Article  Google Scholar 

  • Kummu M, de Moel H, Porkka M, Siebert S, Varis O, Ward PJ (2012) Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci Total Environ 438:477–489

    Article  CAS  Google Scholar 

  • Kwon C-T, Heo J, Lemmon ZH, Capua Y, Hutton SF, Van Eck J, Park SJ, Lippman ZB (2020) Rapid customization of Solanaceae fruit crops for urban agriculture. Nat Biotechnol 38:182–188

    Article  CAS  Google Scholar 

  • Kwon C-T, Tang L, Wang X, Gentile I, Hendelman A, Robitaille G, Van Eck J, Xu C, Lippman ZB (2022) Dynamic evolution of small signalling peptide compensation in plant stem cell control. Nat Plants 8:346–355

    Article  CAS  Google Scholar 

  • Kyriacou MC, Rouphael Y, Di Gioia F, Kyratzis A, Serio F, Renna M, De Pascale S, Santamaria P (2016) Micro-scale vegetable production and the rise of microgreens. Trends Food Sci Technol 57:103–115

    Article  CAS  Google Scholar 

  • Larsen DH, Woltering EJ, Nicole CCS, Marcelis LFM (2020) Response of basil growth and morphology to light intensity and spectrum in a vertical farm. Front Plant Sci 11:597906

    Article  Google Scholar 

  • Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Eck JV, Lippman ZB (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4:766–770

    Article  CAS  Google Scholar 

  • Li J, Chen L, Liang J, Xu R, Jiang Y, Li Y, Ding J, Li M, Qin R, Wei P (2022a) Development of a highly efficient prime editor 2 system in plants. Genome Biol 23:161

    Article  CAS  Google Scholar 

  • Li J, Scarano A, Gonzalez NM, D’Orso F, Yue Y, Nemeth K, Saalbach G, Hill L, de Oliveira MC, Moran R, Santino A, Martin C (2022b) Biofortified tomatoes provide a new route to vitamin D sufficiency. Nat Plants 8:611–616

    Article  CAS  Google Scholar 

  • Li Q, Sapkota M, van der Knaap E (2020) Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: unlocking the neglected potential for crop improvement. Hortic Res 7:36

    Article  Google Scholar 

  • Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36:1160–1163

    Article  CAS  Google Scholar 

  • Li Y, Chen C, Kaye AM, Wasserman WW (2015) The identification of cis-regulatory elements: a review from a machine learning perspective. Biosystems 138:6–17

    Article  CAS  Google Scholar 

  • Liscombe DK, Kamiyoshihara Y, Ghironzi J, Kempthorne CJ, Hooton K, Bulot B, Kanellis V, McNulty J, Lam NB, Nadeau LF, Pautler M, Tieman DM, Klee HJ, Goulet C (2022) A flavin-dependent monooxygenase produces nitrogenous tomato aroma volatiles using cysteine as a nitrogen source. Proc Natl Acad Sci 119:e2118676119

    Article  CAS  Google Scholar 

  • Liu G, Lin Q, ** S, Gao C (2022) The CRISPR-Cas toolbox and gene editing technologies. Mol Cell 82:333–347

    Article  CAS  Google Scholar 

  • Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T, Wu Q, Bartlett M, Jackson D (2021) Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nat Plants 7:287–294

    Article  CAS  Google Scholar 

  • Liu W, Rudis MR, Cheplick MH, Millwood RJ, Yang J-P, Ondzighi-Assoume CA, Montgomery GA, Burris KP, Mazarei M, Chesnut JD, Stewart CN (2020) Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Rep 39:245–257

    Article  CAS  Google Scholar 

  • Lockton S, Gaut BS (2005) Plant conserved non-coding sequences and paralogue evolution. Trends Genet 21:60–65

    Article  CAS  Google Scholar 

  • Lord EM, Russell SD (2002) The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 18:81–105

    Article  CAS  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh T-F, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  Google Scholar 

  • Lu Y, Wang J, Chen B, Mo S, Lian L, Luo Y, Ding D, Ding Y, Cao Q, Li Y, Li Y, Liu G, Hou Q, Cheng T, Wei J, Zhang Y, Chen G, Song C, Hu Q, Sun S, Fan G, Wang Y, Liu Z, Song B, Zhu J-K, Li H, Jiang L (2021) A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice. Nat Plants 7:1445–1452

    Article  CAS  Google Scholar 

  • Lynch JP (2022) Harnessing root architecture to address global challenges. Plant J 109:415–431

    Article  CAS  Google Scholar 

  • Malhi GS, Kaur M, Kaushik P (2021) Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability 13:1318

    Article  CAS  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  • Maluszynski M, Ahloowalia BS, Sigurbjörnsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315

    Article  Google Scholar 

  • Maqbool S, Hassan MA, **a X, York LM, Rasheed A, He Z (2022) Root system architecture in cereals: progress, challenges and perspective. Plant J 110:23–42

    Article  CAS  Google Scholar 

  • McCarty NS, Graham AE, Studená L, Ledesma-Amaro R (2020) Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun 11:1281

    Article  CAS  Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLOS Biol 2:e347

    Article  Google Scholar 

  • McGarry RC, Ayre BG (2021) Cotton architecture: examining the roles of SINGLE FLOWER TRUSS and SELF-PRUNING in regulating growth habits of a woody perennial crop. Curr Opin Plant Biol 59:101968

    Article  CAS  Google Scholar 

  • McGarry RC, Ayre BG (2012) Manipulating plant architecture with members of the CETS gene family. Plant Sci 188–189:71–81

    Article  Google Scholar 

  • McGarry RC, Prewitt SF, Culpepper S, Eshed Y, Lifschitz E, Ayre BG (2016) Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs. New Phytol 212:244–258

    Article  CAS  Google Scholar 

  • Menz J, Modrzejewski D, Hartung F, Wilhelm R, Sprink T (2020) Genome edited crops touch the market: a view on the global development and regulatory environment. Front Plant Sci 11:586027

    Article  Google Scholar 

  • Minoia S, Petrozza A, D’Onofrio O, Piron F, Mosca G, Sozio G, Cellini F, Bendahmane A, Carriero F (2010) A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res Notes 3:69

    Article  Google Scholar 

  • Mir MS, Naikoo NB, Kanth RH, Bahar FA, Bhat MA, Nazir A, Mahdi SS, Amin Z, Singh L, Raja W, Saad AA, Bhat TA, Palmo T, Ahngar TA (2022) Vertical farming: the future of agriculture: a review. Pharma Innov J 11:1175–1195

    Google Scholar 

  • Miraglia M, Berdal KG, Brera C, Corbisier P, Holst-Jensen A, Kok EJ, Marvin HJP, Schimmel H, Rentsch J, van Rie JPPF, Zagon J (2004) Detection and traceability of genetically modified organisms in the food production chain. Food Chem Toxicol 42:1157–1180

    Article  CAS  Google Scholar 

  • Miranda J, Ponce P, Molina A, Wright P (2019) Sensing, smart and sustainable technologies for Agri-Food 4.0. Comput Ind 108:21–36

    Article  Google Scholar 

  • Molla KA, Sretenovic S, Bansal KC, Qi Y (2021) Precise plant genome editing using base editors and prime editors. Nat Plants 7:1166–1187

    Article  CAS  Google Scholar 

  • Morris J, Else MA, El Chami D, Daccache A, Rey D, Knox JW (2017) Essential irrigation and the economics of strawberries in a temperate climate. Agric Water Manag 194:90–99

    Article  Google Scholar 

  • Née G, Romera-Branchat M (2022) Sexual revolution: PARTHENOGENESIS (PAR) gene enables crop seed cloning. Mol Plant 15:381

    Article  Google Scholar 

  • Neumann PM (2008) Co** mechanisms for crop plants in drought-prone environments. Ann Bot 101:901–907

    Article  CAS  Google Scholar 

  • Nevard L, Russell AL, Foord K, Vallejo-Marín M (2021) Transmission of bee-like vibrations in buzz-pollinated plants with different stamen architectures. Sci Rep 11:13541

    Article  CAS  Google Scholar 

  • Njogu MK, Yang F, Li J, Wang X, Ogweno JO, Chen J (2020) A novel mutation in TFL1 homolog sustaining determinate growth in cucumber (Cucumis sativus L.). Theor Appl Genet 133:3323–3332

    Article  CAS  Google Scholar 

  • Nonaka S, Someya T, Kadota Y, Nakamura K, Ezura H (2019) Super-Agrobacterium ver. 4: improving the transformation frequencies and genetic engineering possibilities for crop plants. Front Plant Sci 10:1204

    Article  Google Scholar 

  • O’Sullivan CA, Bonnett GD, McIntyre CL, Hochman Z, Wasson AP (2019) Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agric Syst 174:133–144

    Article  Google Scholar 

  • O’Sullivan CA, McIntyre CL, Dry IB, Hani SM, Hochman Z, Bonnett GD (2020) Vertical farms bear fruit. Nat Biotechnol 38:160–162

    Article  Google Scholar 

  • Pacifico D, Paris R (2016) Effect of organic potato farming on human and environmental health and benefits from new plant breeding techniques. Is it only a matter of public acceptance? Sustainability 8:1054

    Article  Google Scholar 

  • Palmgren MG, Edenbrandt AK, Vedel SE, Andersen MM, Landes X, Østerberg JT, Falhof J, Olsen LI, Christensen SB, Sandøe P, Gamborg C, Kappel K, Thorsen BJ, Pagh P (2015) Are we ready for back-to-nature crop breeding? Trends Plant Sci 20:155–164

    Article  CAS  Google Scholar 

  • Parada F, Gabarrell X, Rufí-Salís M, Arcas-Pilz V, Muñoz P, Villalba G (2021) Optimizing irrigation in urban agriculture for tomato crops in rooftop greenhouses. Sci Total Environ 794:148689

    Article  CAS  Google Scholar 

  • Park SJ, Jiang K, Schatz MC, Lippman ZB (2012) Rate of meristem maturation determines inflorescence architecture in tomato. Proc Natl Acad Sci USA 109:639–644

    Article  CAS  Google Scholar 

  • Park SJ, Jiang K, Tal L, Yichie Y, Gar O, Zamir D, Eshed Y, Lippman ZB (2014) Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat Genet 46:1337–1342

    Article  CAS  Google Scholar 

  • Pawar R, Rana VS (2019) Manipulation of source-sink relationship in pertinence to better fruit quality and yield in fruit crops: a review. Agric Rev 40:200–207

    Google Scholar 

  • Pearson LJ, Pearson L, Pearson CJ (2010) Sustainable urban agriculture: stocktake and opportunities. Int J Agric Sustain 8:7–19

    Article  Google Scholar 

  • Pellegrini P, Fernández RJ (2018) Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc Natl Acad Sci 115:2335–2340

    Article  CAS  Google Scholar 

  • Pereira L, Sapkota M, Alonge M, Zheng Y, Zhang Y, Razifard H, Taitano NK, Schatz MC, Fernie AR, Wang Y, Fei Z, Caicedo AL, Tieman DM, van der Knaap E (2021) Natural genetic diversity in tomato flavor genes. Front Plant Sci 12:642828

    Article  Google Scholar 

  • Petrovics D, Giezen M (2022) Planning for sustainable urban food systems: an analysis of the up-scaling potential of vertical farming. J Environ Plan Manag 65:785–808

    Article  Google Scholar 

  • Pimentel D (1996) Green revolution agriculture and chemical hazards. Sci Total Environ 188:S86–S98

    Article  CAS  Google Scholar 

  • **ali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109:12302–12308

    Article  CAS  Google Scholar 

  • Pinstrup-Andersen P, Hazell PBR (1985) The impact of the green revolution and prospects for the future. Food Rev Int 1:1–25

    Article  Google Scholar 

  • Pixley KV, Falck-Zepeda JB, Paarlberg RL, Phillips PWB, Slamet-Loedin IH, Dhugga KS, Campos H, Gutterson N (2022) Genome-edited crops for improved food security of smallholder farmers. Nat Genet 54:364–367

    Article  CAS  Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

    Article  CAS  Google Scholar 

  • Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B (2017) Conserved non-coding elements: developmental gene regulation meets genome organization. Nucleic Acids Res 45:12611–12624

    Article  CAS  Google Scholar 

  • Purugganan MD, Jackson SA (2021) Advancing crop genomics from lab to field. Nat Genet 53:595–601

    Article  CAS  Google Scholar 

  • Rajametov SN, Lee K, Jeong H-B, Cho M-C, Nam C-W, Yang E-Y (2021) Physiological traits of thirty-five tomato accessions in response to low temperature. Agriculture 11:792

    Article  CAS  Google Scholar 

  • Ramalho JC, Marques NC, Semedo JN, Matos MC, Quartin VL (2002) Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality. Plant Biol 4:112–120

    Article  CAS  Google Scholar 

  • Rehman F, Gong H, Bao Y, Zeng S, Huang H, Wang Y (2022) CRISPR gene editing of major domestication traits accelerating breeding for Solanaceae crops improvement. Plant Mol Biol 108:157–173

    Article  CAS  Google Scholar 

  • Ro S, Chea L, Ngoun S, Stewart ZP, Roeurn S, Theam P, Lim S, Sor R, Kosal M, Roeun M, Dy KS, Prasad PVV (2021) Response of tomato genotypes under different high temperatures in field and greenhouse conditions. Plants 10:449

    Article  CAS  Google Scholar 

  • Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES (2016) Open chromatin reveals the functional maize genome. Proc Natl Acad Sci 113:E3177–E3184

    Article  CAS  Google Scholar 

  • Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480

    Article  Google Scholar 

  • Rodriguez-Leal D, Xu C, Kwon C-T, Soyars C, Demesa-Arevalo E, Man J, Liu L, Lemmon ZH, Jones DS, Eck JV, Jackson DP, Bartlett ME, Nimchuk ZL, Lippman ZB (2019) Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat Genet 51:786–792

    Article  CAS  Google Scholar 

  • Saad MHM, Hamdan NM, Sarker MR (2021) State of the art of urban smart vertical farming automation system: advanced topologies, issues and recommendations. Electronics 10:1422

    Article  CAS  Google Scholar 

  • Sallaud C, Gay C, Larmande P, Bès M, Piffanelli P, Piégu B, Droc G, Regad F, Bourgeois E, Meynard D, Périn C, Sabau X, Ghesquière A, Glaszmann JC, Delseny M, Guiderdoni E (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464

    Article  CAS  Google Scholar 

  • Sansbury BM, Hewes AM, Kmiec EB (2019) Understanding the diversity of genetic outcomes from CRISPR-Cas generated homology-directed repair. Commun Biol 2:1–10

    Article  Google Scholar 

  • Schwope R, Magris G, Miculan M, Paparelli E, Celii M, Tocci A, Marroni F, Fornasiero A, De Paoli E, Morgante M (2021) Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression. Plant J 107:1631–1647

    Article  CAS  Google Scholar 

  • SharathKumar M, Heuvelink E, Marcelis LFM (2020) Vertical farming: moving from genetic to environmental modification. Trends Plant Sci 25:724–727

    Article  CAS  Google Scholar 

  • Sharma S, Katoch V, Kumar S, Chatterjee S (2021) Functional relationship of vegetable colors and bioactive compounds: implications in human health. J Nutr Biochem 92:108615

    Article  CAS  Google Scholar 

  • Shelton AM, Sarwer SH, Hossain MdJ, Brookes G, Paranjape V (2020) Impact of BT brinjal cultivation in the market value chain in five districts of Bangladesh. Front Bioeng Biotechnol 8:498

    Article  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  Google Scholar 

  • Shimizu T, Masuda T (2021) The role of Tetrapyrrole- and GUN1-dependent signaling on chloroplast biogenesis. Plants 10:196

    Article  CAS  Google Scholar 

  • Shrestha A, Khan A, Dey N (2018) cis–trans engineering: advances and perspectives on customized transcriptional regulation in plants. Mol Plant 11:886–898

    Article  CAS  Google Scholar 

  • Si W, Yuan Y, Huang J, Zhang X, Zhang Y, Zhang Y, Tian D, Wang C, Yang Y, Yang S (2015) Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F2 plants. New Phytol 206:1491–1502

    Article  CAS  Google Scholar 

  • Si X, Zhang H, Wang Y, Chen K, Gao C (2020) Manipulating gene translation in plants by CRISPR–Cas9-mediated genome editing of upstream open reading frames. Nat Protoc 15:338–363

    Article  CAS  Google Scholar 

  • Silva WB, Vicente MH, Robledo JM, Reartes DS, Ferrari RC, Bianchetti R, Araújo WL, Freschi L, Peres LEP, Zsögön A (2018) SELF-PRUNING acts synergistically with DIAGEOTROPICA to guide auxin responses and proper growth form. Plant Physiol 176:2904–2916

    Article  CAS  Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203

    Article  CAS  Google Scholar 

  • Smith MR, Rao IM, Merchant A (2018) Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front Plant Sci 9:1889

    Article  Google Scholar 

  • Song S, Hou Y, Lim RBH, Gaw LYF, Richards DR, Tan HTW (2022) Comparison of vegetable production, resource-use efficiency and environmental performance of high-technology and conventional farming systems for urban agriculture in the tropical city of Singapore. Sci Total Environ 807:150621

    Article  CAS  Google Scholar 

  • Soyk S, Benoit M, Lippman ZB (2020) New horizons for dissecting epistasis in crop quantitative trait variation. Annu Rev Genet 54:287–307

    Article  CAS  Google Scholar 

  • Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, Park SJ, Goren A, Jiang K, Ramos A, van der Knaap E, Eck JV, Zamir D, Eshed Y, Lippman ZB (2017a) Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169:1142–1155

    Article  CAS  Google Scholar 

  • Soyk S, Lemmon ZH, Sedlazeck FJ, Jiménez-Gómez JM, Alonge M, Hutton SF, Van Eck J, Schatz MC, Lippman ZB (2019) Duplication of a domestication locus neutralized a cryptic variant that caused a breeding barrier in tomato. Nat Plants 5:471–479

    Article  CAS  Google Scholar 

  • Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, Zhang L, Van Eck J, Jiménez-Gómez JM, Lippman ZB (2017b) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49:162–168

    Article  CAS  Google Scholar 

  • Takisawa R, Nakazaki T, Nunome T, Fukuoka H, Kataoka K, Saito H, Habu T, Kitajima A (2018) The parthenocarpic gene Pat-k is generated by a natural mutation of SlAGL6 affecting fruit development in tomato (Solanum lycopersicum L.). BMC Plant Biol 18:72

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11:63–68

    Article  CAS  Google Scholar 

  • Tao H, Xu S, Tian Y, Li Z, Ge Y, Zhang J, Wang Y, Zhou G, Deng X, Zhang Z, Ding Y, Jiang D, Guo Q, ** S (2022) Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. Plant Commun. https://doi.org/10.1016/j.xplc.2022.100344

    Article  Google Scholar 

  • Tavan M, Wee B, Brodie G, Fuentes S, Pang A, Gupta D (2021) Optimizing sensor-based irrigation management in a soilless vertical farm for growing microgreens. Front Sustain Food Syst 4:622720

    Article  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  CAS  Google Scholar 

  • Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:178–184

    Article  Google Scholar 

  • Touliatos D, Dodd IC, McAinsh M (2016) Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food Energy Secur 5:184–191

    Article  Google Scholar 

  • Underwood CJ, Vijverberg K, Rigola D, Okamoto S, Oplaat C, den Camp RHMO, Radoeva T, Schauer SE, Fierens J, Jansen K, Mansveld S, Busscher M, **ong W, Datema E, Nijbroek K, Blom E-J, Bicknell R, Catanach A, Erasmuson S, Winefield C, van Tunen AJ, Prins M, Schranz ME, van Dijk PJ (2022) A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat Genet 54:84–93

    Article  CAS  Google Scholar 

  • Uphoff N (2003) Higher yields with fewer external inputs? The system of rice intensification and potential contributions to agricultural sustainability. Int J Agric Sustain 1:38–50

    Article  Google Scholar 

  • van Delden SH, SharathKumar M, Butturini M, Graamans LJA, Heuvelink E, Kacira M, Kaiser E, Klamer RS, Klerkx L, Kootstra G, Loeber A, Schouten RE, Stanghellini C, van Ieperen W, Verdonk JC, Vialet-Chabrand S, Woltering EJ, van de Zedde R, Zhang Y, Marcelis LFM (2021) Current status and future challenges in implementing and upscaling vertical farming systems. Nat Food 2:944–956

    Article  Google Scholar 

  • Van Gerrewey T, Boon N, Geelen D (2022) Vertical farming: the only way is up? Agronomy 12:2

    Article  Google Scholar 

  • Van Tassel DL, Tesdell O, Schlautman B, Rubin MJ, DeHaan LR, Crews TE, Streit Krug A (2020) New food crop domestication in the age of gene editing: genetic, agronomic and cultural change remain co-evolutionarily entangled. Front Plant Sci 11:789

    Article  Google Scholar 

  • Varkonyi-Gasic E, Wang T, Voogd C, Jeon S, Drummond RSM, Gleave AP, Allan AC (2019) Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnol J 17:869–880

    Article  CAS  Google Scholar 

  • Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME (2021) Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci 26:631–649

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  Google Scholar 

  • Veillet F, Perrot L, Chauvin L, Kermarrec M-P, Guyon-Debast A, Chauvin J-E, Nogué F, Mazier M (2019) Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int J Mol Sci 20:402

    Article  Google Scholar 

  • Veluthambi K, Gupta AK, Sharma A (2003) The current status of plant transformation technologies. Curr Sci 84:368–380

    CAS  Google Scholar 

  • Vicente MH, Zsögön A, de Sá AFL, Ribeiro RV, Peres LEP (2015) Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum). J Plant Physiol 177:11–19

    Article  CAS  Google Scholar 

  • Vijverberg K, Ozias-Akins P, Schranz ME (2019) Identifying and engineering genes for parthenogenesis in plants. Front Plant Sci 10:128

    Article  Google Scholar 

  • Walter A, Finger R, Huber R, Buchmann N (2017) Opinion: smart farming is key to develo** sustainable agriculture. Proc Natl Acad Sci 114:6148–6150

    Article  CAS  Google Scholar 

  • Wang J, He Z, Wang G, Zhang R, Duan J, Gao P, Lei X, Qiu H, Zhang C, Zhang Y, Yin H (2022) Efficient targeted insertion of large DNA fragments without DNA donors. Nat Methods 19:331–340

    Article  CAS  Google Scholar 

  • Wang M, Dong C, Gao W (2019) Evaluation of the growth, photosynthetic characteristics, antioxidant capacity, biomass yield and quality of tomato using aeroponics, hydroponics and porous tube-vermiculite systems in bio-regenerative life support systems. Life Sci Space Res 22:68–75

    Article  Google Scholar 

  • Waraich EA, Ahmad R, Ashraf MY, Saifullah AM (2011) Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric Scand Sect B Soil Plant Sci 61:291–304

    CAS  Google Scholar 

  • Weidner T, Yang A, Hamm MW (2021) Energy optimisation of plant factories and greenhouses for different climatic conditions. Energy Convers Manag 243:114336

    Article  Google Scholar 

  • Wen C, Zhao W, Liu W, Yang L, Wang Y, Liu X, Xu Y, Ren H, Guo Y, Li C, Li J, Weng Y, Zhang X (2019) CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development 146:dev180166

    Article  CAS  Google Scholar 

  • Wolfert S, Ge L, Verdouw C, Bogaardt M-J (2017) Big data in smart farming – a review. Agric Syst 153:69–80

    Article  Google Scholar 

  • Wong CE, Teo ZWN, Shen L, Yu H (2020) Seeing the lights for leafy greens in indoor vertical farming. Trends Food Sci Technol 106:48–63

    Article  CAS  Google Scholar 

  • Wu K, Wang S, Song W, Zhang J, Wang Y, Liu Q, Yu J, Ye Y, Li S, Chen J, Zhao Y, Wang J, Wu X, Wang M, Zhang Y, Liu B, Wu Y, Harberd NP, Fu X (2020) Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367:eaaz2046

    Article  CAS  Google Scholar 

  • **n T, Tian H, Ma Y, Wang S, Yang L, Li X, Zhang M, Chen C, Wang H, Li H, Xu J, Huang S, Yang X (2022) Targeted creation of new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants. Hortic Res 9:uhab086

    Article  Google Scholar 

  • Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, **: past decades, current challenges, and future perspectives. Mol Plant 13:187–214

    Article  CAS  Google Scholar 

  • Yeh N, Chung J-P (2009) High-brightness LEDs—energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sustain Energy Rev 13:2175–2180

    Article  CAS  Google Scholar 

  • Yu H, Li J (2022) Breeding future crops to feed the world through de novo domestication. Nat Commun 13:1171

    Article  CAS  Google Scholar 

  • Yu H, Lin T, Meng X, Du H, Zhang J, Liu G, Chen M, **g Y, Kou L, Li X, Gao Q, Liang Y, Liu X, Fan Z, Liang Y, Cheng Z, Chen M, Tian Z, Wang Y, Chu C, Zuo J, Wan J, Qian Q, Han B, Zuccolo A, Wing RA, Gao C, Liang C, Li J (2021) A route to de novo domestication of wild allotetraploid rice. Cell 184:1156–1170

    Article  CAS  Google Scholar 

  • Yuan X, Fang R, Zhou K, Huang Y, Lei G, Wang X, Chen X (2021) The APETALA2 homolog CaFFN regulates flowering time in pepper. Hortic Res 8:208

    Article  CAS  Google Scholar 

  • Zaidi SS-A, Mahas A, Vanderschuren H, Mahfouz MM (2020) Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol 21:289

    Article  Google Scholar 

  • Zhang H, Zhu J, Gong Z, Zhu J-K (2022) Abiotic stress responses in plants. Nat Rev Genet 23:104–119

    Article  Google Scholar 

  • Zhang S, Jiao Z, Liu L, Wang K, Zhong D, Li S, Zhao T, Xu X, Cui X (2018) Enhancer-promoter interaction of SELF PRUNING 5G shapes photoperiod adaptation. Plant Physiol 178:1631–1642

    Article  CAS  Google Scholar 

  • Zhao W, Siegel D, Biton A, Tonqueze OL, Zaitlen N, Ahituv N, Erle DJ (2017) CRISPR–Cas9-mediated functional dissection of 3′-UTRs. Nucleic Acids Res 45:10800–10810

    Article  CAS  Google Scholar 

  • Zhen S, van Iersel MW (2017) Far-red light is needed for efficient photochemistry and photosynthesis. J Plant Physiol 209:115–122

    Article  CAS  Google Scholar 

  • Zhou Y, Zhang Z, Bao Z, Li H, Lyu Y, Zan Y, Wu Y, Cheng L, Fang Y, Wu K, Zhang J, Lyu H, Lin T, Gao Q, Saha S, Mueller L, Fei Z, Städler T, Xu S, Zhang Z, Speed D, Huang S (2022) Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606:527–534

    Article  CAS  Google Scholar 

  • Zhu H, Li C, Gao C (2020) Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21:661–677

    Article  CAS  Google Scholar 

  • Zhu X-G, Zhu J-K (2021) Precision genome editing heralds rapid de novo domestication for new crops. Cell 184:1133–1134

    Article  CAS  Google Scholar 

  • Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36:1211–1216

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Kwon laboratory for comments and discussions. This research was funded by a grant from Kyung Hee University in 2021 (KHU-20210737), and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1C1C1002941).

Author information

Authors and Affiliations

Authors

Contributions

C-TK conceived the research, prepared the figures, and wrote the manuscript.

Corresponding author

Correspondence to Choon-Tak Kwon.

Ethics declarations

Conflict of Interest

The author declares that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, CT. Trait Improvement of Solanaceae Fruit Crops for Vertical Farming by Genome Editing. J. Plant Biol. 66, 1–14 (2023). https://doi.org/10.1007/s12374-022-09370-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-022-09370-5

Keywords

Navigation