Log in

Metabolomics Analysis Reveals the Role of Cyanidin Metabolism in Plumbago auriculata Flower Color

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Blue flowers, which are rare, have long been a focus for researchers engaged in colored flower breeding. In this study, Plumbago auriculata, a plant with blue flowers, and its white flower forma Plumbago auriculata f. alba were used as research materials. Flower color quantification, environmental scanning electron microscopy (ESEM) observation of petal epidermal cells, and determination of the cell sap pH were carried out; moreover, metabolomic analysis was used to analyze the flavonoid metabolites of both types of petals. The results showed that the flower color of P. auriculata was bluish violet, and there was no significant difference in the epidermal cell distribution of the white and blue petals. The key substance that determined the bluish violet flower color was cyanidin-3-O-(6″-p-coumaroylglucoside) (Cy3-pC·G). Compared to the white petal cells, the blue petal cells exhibited up to 40 upregulated flavonoid compounds that were copigments. Together with the significantly increased pH (5.92 ± 0.12) of the petal cell sap, these copigments affected the color presentation of Cy3-pC·G, causing the final petal color of P. auriculata to be bluish violet. The results of this study indicate that cyanidin is an important anthocyanidin in blue flowers, which provides new insights into the breeding of blue flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

Cy3-pC·G:

Cyanidin-3-O-(6″-p-coumaroylglucoside)

ESEM:

Environmental scanning electron microscopy

F3′5′H :

Flavonoid 3′,5′-hydroxylase

F3′H :

Flavonoid 3′-monooxygenase

FC:

Fold change

FFA:

Formalin-acetic acid-alcohol

KEGG:

Kyoto encyclopedia of genes and genomes

PCA:

Principal component analysis

QC:

Quality control

UPLC–MS/MS:

Ultraperformance liquid chromatography-tandem mass spectrometry

VIP:

Variable importance in projection

References

  • Baumann K, Perez-Rodriguez M, Bradley D, Venail J, Bailey P, ** H, Martin C (2007) Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 134(9):1691–1701

    Article  CAS  Google Scholar 

  • Brouillard R (1982) Chemical structure of anthocyanins, vol 1. Academic Press, New York

    Google Scholar 

  • Brouillard R (1983) The in vivo expression of anthocyanin colour in plants. Phytochemistry 22(6):1311–1323

    Article  CAS  Google Scholar 

  • Brouillard R, Dubois JE (1977) Mechanism of the structural transformations of anthocyanins in acidic media. J Am Chem Soc 99(5):1359–1364

    Article  CAS  Google Scholar 

  • Brouillard R, Delaporte B, Dubois JE (1978) Chemistry of anthocyanin pigments. 3. Relaxation amplitudes in pH-jump experiments. J Am Chem Soc 100(19):6202–6205

    Article  CAS  Google Scholar 

  • Castañeda-Ovando A, de Lourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113(4):859–871

    Article  Google Scholar 

  • Chandler S, Tanaka Y (2007) Genetic modification in floriculture. Crit Rev Plant Sci 26(4):169–197

    Article  CAS  Google Scholar 

  • Cheminat A, Brouillard R (1986) PMR investigation of 3-O-(β-d-glucosyl) malvidin structural transformations in aqueous solutions. Tetrahedron Lett 27(37):4457–4460

    Article  CAS  Google Scholar 

  • Chen LJ, Hrazdina G (1981) Structural aspects of anthocyanin-flavonoid complex formation and its role in plant color. Phytochemistry 20(2):297–303

    Article  CAS  Google Scholar 

  • Dyer AG, Whitney HM, Arnold SE, Glover BJ, Chittka L (2007) Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod Plant Interact 1(1):45–55

    Article  Google Scholar 

  • Farr JE, Sigurdson GT, Giusti MM (2018) Influence of cyanidin glycosylation patterns on carboxypyranoanthocyanin formation. Food Chem 259:261–269

    Article  CAS  Google Scholar 

  • Forkmann G (1991) Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed 106(1):1–26

    Article  CAS  Google Scholar 

  • Gonnet JF (1999) Colour effects of co-pigmentation of anthocyanins revisited—2. A colorimetric look at the solutions of cyanin co-pigmented byrutin using the CIELAB scale. Food Chem 66(3):387–394

    Article  CAS  Google Scholar 

  • Gorton HL, Vogelmann TC (1996) Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol 112(3):879–888

    Article  CAS  Google Scholar 

  • Hernandez LF, Larsen AO (2013) Visual definition of physiological maturity in sunflower (Helianthus annuus L.) is associated with receptacle quantitative color parameters. Span J Agric Res 2:447–454

    Article  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7(7):1071

    Article  CAS  Google Scholar 

  • Holton TA, Brugliera F, Tanaka Y (1993) Cloning and expression of flavonol synthase from Petunia hybrida. Plant J 4(6):1003–1010

    Article  CAS  Google Scholar 

  • Hoshino T, Matsumoto U, Goto T (1981) Self-association of some anthocyanins in neutral aqueous solution. Phytochemistry 20(8):1971–1976

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  Google Scholar 

  • Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1):1–21

    Article  Google Scholar 

  • Li W, Gao S, Li Q, Shen P, Li Y, Hu D, Li J (2020) Transcriptome profiling of Plumbago auriculata Lam. in response to cold stress. Acta Physiol Plant 42:1–18

    Article  Google Scholar 

  • Lou Q, Liu Y, Qi Y, Jiao S, Tian F, Jiang L, Wang Y (2014) Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J Exp Bot 65(12):3157–3164

    Article  CAS  Google Scholar 

  • Mazza G, Brouillard R (1990) The mechanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry 29(4):1097–1102

    Article  CAS  Google Scholar 

  • Mazza G, Miniati E (1993) Grapes. Anthocyanins in fruits, vegetables and grains. CRC Press, Boca Raton, pp 149–199

    Google Scholar 

  • Mizuno T, Uehara A, Mizuta D, Yabuya T, Iwashina T (2015) Contribution of anthocyanin–flavone co-pigmentation to grayed violet flower color of Dutch iris cultivar ‘Tiger’s Eye’under the presence of carotenoids. Sci Hortic 186:201–206

    Article  CAS  Google Scholar 

  • Mol J, Cornish E, Mason J, Koes R (1999) Novel coloured flowers. Curr Opin Biotechnol 10(2):198–201

    Article  CAS  Google Scholar 

  • Noda KI, Glover BJ, Linstead P, Martin C (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369(6482):661–664

    Article  CAS  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181(3):219–229

    Article  CAS  Google Scholar 

  • Rakić V, Rinnan Å, Polak T, Skrt M, Miljković M, Ulrih NP (2019) pH-induced structural forms of cyanidin and cyanidin 3-O-β-glucopyranoside. Dyes Pigm 165:71–80

    Article  Google Scholar 

  • Shrestha B, Pandey RP, Darsandhari S, Parajuli P, Sohng JK (2019) Combinatorial approach for improved cyanidin 3-O-glucoside production in Escherichia coli. Microb Cell Fact 18(1):7

    Article  Google Scholar 

  • Stewart RN, Norris KH, Asen S (1975) Microspectrophotometric measurement of pH and pH effect on color of petal epidermal cells. Phytochemistry 14(4):937–942

    Article  CAS  Google Scholar 

  • Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tissue Organ Cult 80(1):1–24

    Article  CAS  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54(4):733–749

    Article  CAS  Google Scholar 

  • Whang SS, Um WS, Song IJ, Lim PO, Choi K, Park KW, Koo JC (2011) Molecular analysis of anthocyanin biosynthetic genes and control of flower coloration by flavonoid 3′, 5′-hydroxylase (F3′ 5′ H) in Dendrobium moniliforme. J Plant Biol 54(3):209–218

    Article  CAS  Google Scholar 

  • Whitney HM, Glover BJ (2007) Morphology and development of floral features recognised by pollinators. Arthropod Plant Interact 1(3):147–158

    Article  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126(2):485–493

    Article  CAS  Google Scholar 

  • Xu W, Grain D, Le Gourrierec J, Harscoët E, Berger A, Jauvion V, Salsac F (2013) Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT 8 expression, in A rabidopsis. New Phytol 198(1):59–70

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Yuanxiang Hang from Sichuan Tianyi Ecological Garden Group Co. Ltd.

Funding

This work was supported by the Sichuan Science and Technology Program (2016NYZ0038).

Author information

Authors and Affiliations

Authors

Contributions

Data curation, YL; formal analysis, WL and DH; methodology, YL and SG; project administration, SG; validation, TL; writing–original draft, WL; writing–review and editing, JL and PS.

Corresponding author

Correspondence to Su** Gao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, W., Hu, D. et al. Metabolomics Analysis Reveals the Role of Cyanidin Metabolism in Plumbago auriculata Flower Color. J. Plant Biol. 64, 253–265 (2021). https://doi.org/10.1007/s12374-021-09305-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-021-09305-6

Keywords

Navigation