Log in

High-Efficient and Transient Transformation of Moso Bamboo (Phyllostachys edulis) and Ma Bamboo (Dendrocalamus latiflorus Munro)

  • Technical Report
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Moso bamboo (Phyllostachys edulis) and Ma bamboo (Dendrocalamus latiflorus Munro) are two major species, which have significant economic and research application value. At present, methods for interrogation of gene function in bamboo are limited and time consuming. Therefore, establishing an efficient transient expression system for bamboo is very useful for dissecting the function of candidate genes. In this study, we developed protocols for the transient transformation of protoplasts from different tissues in Moso bamboo and Ma bamboo and established the optimized protocol and materials for improving the efficiency of transient transformation. The results indicated that the transformation efficiency of protoplasts from 15-day-old etiolated seedlings was higher than other tissues, which were 44.7% in Moso bamboo and 35.2% in Ma bamboo. In addition, we also established an experimental approach for optimizing overexpression of external proteins using Agrobacterium-mediated transient transformation of bamboo leaves and whole seedlings. Finally, we utilized the RUBY reporter for monitoring successful transformation samples with red color for downstream experiments in Moso bamboo. In summary, this study provides optimized protocols for the over-expression of candidate genes in protoplasts or bamboo leaves and whole seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aldemita RR, Hodges TK (1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199(4):612–617

    Article  CAS  Google Scholar 

  • Andrieu A, Breitler JC, Sire C, Meynard D, Gantet P, Guiderdoni E (2012) An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice 5(1):23

    Article  Google Scholar 

  • Anthony P, Davey MR, Power JB, Lowe KC (1995) An improved protocol for the culture of cassava leaf protoplasts. Plant Cell Tiss Org 42(3):299–302

    Article  CAS  Google Scholar 

  • Aoki S, Takebe I (1969) Infection of tobacco mesophyll protoplasts by tobacco mosaic virus ribonucleic acid. Virology 39(3):439–448

    Article  CAS  Google Scholar 

  • Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30(12):2281–2292

    Article  CAS  Google Scholar 

  • Cao J, Yao D, Lin F, Jiang M (2014) PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize. Acta Physiol Plant 36(5):1271–1281

    Article  CAS  Google Scholar 

  • Chabaud M, de Carvalho-Niebel F, Barker DG (2003) Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep 22(1):46–51

    Article  CAS  Google Scholar 

  • Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang G (2010) A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Mol Plant Pathol 7(5):417–427

    Article  Google Scholar 

  • Chen J, Yi Q, Song Q, Gu Y, Zhang J, Hu Y, Liu H, Liu Y, Yu G, Huang Y (2015) A highly efficient maize nucellus protoplast system for transient gene expression and studying programmed cell death-related processes. Plant Cell Rep 34(7):1239–1251

    Article  CAS  Google Scholar 

  • Choudhury D, Sahu JK, Sharma GD (2012) Value addition to bamboo shoots: a review. J Food Sci Tech 49(4):407–414

    Article  CAS  Google Scholar 

  • Cocking EC (1960) A method for isolation of plant protoplasts and vacuoles. Nature 187(4741):962–963

    Article  Google Scholar 

  • Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J (2013) Progress in plant protoplast research. Planta 238(6):991–1003

    Article  CAS  Google Scholar 

  • Fumio N, Hideaki T (1995) Intelligent functionally graded material: bamboo. Compos Eng 5(7):743–751

    Article  Google Scholar 

  • Ge W, Zhang Y, Cheng Z, Hou D, Li X, Gao J (2017) Main regulatory pathways, key genes and microRNAs involved in flower formation and development of moso bamboo (Phyllostachys edulis). Plant Biotechnol J 15(1):82–96

    Article  CAS  Google Scholar 

  • Gomez Cano L, Yang F, Grotewold E (2019) Isolation and efficient maize protoplast transformation. Bio-Protocol 9(16):e3346

    Article  Google Scholar 

  • Guo J, Morrell-Falvey JL, Labbé JL, Muchero W, Kalluri UC, Tuskan GA, Chen JG, Ng C (2012) Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS ONE 7(9):e44908

    Article  CAS  Google Scholar 

  • Gurbuz EI, Gallo JM, Alonso DM, Wettstein SG, Lim WY, Dumesic JA (2013) Conversion of hemicellulose into furfural using solid acid catalysts in gamma-valerolactone. Angew Chem 52(4):1270–1274

    Article  Google Scholar 

  • He Y, Zhang T, Sun H, Zhan H, Zhao Y (2020) A reporter for noninvasively monitoring gene expression and plant transformation. Hortic Res 7:152

    Article  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  CAS  Google Scholar 

  • Huang H, Wang Z, Cheng J, Zhao W, Li X, Wang H, Zhang Z, Sui X (2013) An efficient cucumber (Cucumis sativus L.) protoplast isolation and transient expression system. Sci Hortic 150:206–212

    Article  CAS  Google Scholar 

  • Huo A, Chen Z, Wang P, Yang L, Wang G, Wang D, Liao S, Cheng T, Chen J, Shi J (2017) Establishment of transient gene expression systems in protoplasts from Liriodendron hybrid mesophyll cells. PLoS ONE 12(3):e0172475

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    Article  CAS  Google Scholar 

  • Jia X, Zhang X, Qu J, Rong H (2016) Optimization conditions of wheat mesophyll protoplast isolation. Agric Sci 07(12):850–858

    CAS  Google Scholar 

  • Larkin PJ (1976) Purification and viability determinations of plant protoplasts. Planta 128(3):213–216

    Article  CAS  Google Scholar 

  • Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273(52):34970–34975

    Article  CAS  Google Scholar 

  • Li S, Cong Y, Liu Y, Wang T, Shuai Q, Chen N, Gai J, Li Y (2017) Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci 8:246

    Google Scholar 

  • Li H, Li K, Guo Y, Guo J, Miao K, Botella JR, Song CP, Miao Y (2018) A transient transformation system for gene characterization in upland cotton (Gossypium hirsutum). Plant Methods 14:50

    Article  Google Scholar 

  • Lin XC, Chow TY, Chen HH, Liu CC, Fang W (2010) Understanding bamboo flowering based on large-scale analysis of expressed sequence tags. Genet Mol Res 9(2):1085–1093

    Article  CAS  Google Scholar 

  • Long C, Iino M (2001) Light-dependent osmoregulation in pea stem protoplasts, photoreceptors, tissue specificity, ion relationships, and physiological implications. Plant Physiol 125(4):1854–1869

    Article  CAS  Google Scholar 

  • Lu J, Bai M, Ren H, Liu J, Wang C (2017) An efficient transient expression system for gene function analysis in rose. Plant Methods 13:116

    Article  Google Scholar 

  • Mangano S, Gonzalez CD, Petruccelli S (2014) Agrobacterium tumefaciens-mediated transient transformation of Arabidopsis thaliana leaves. Methods Mol Biol 1062:165–173

    Article  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23(3):134–143

    Article  CAS  Google Scholar 

  • Nanjareddy K, Arthikala MK, Blanco L, Arellano ES, Lara M (2016) Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis. BMC Biotechnol 16(1):53

    Article  Google Scholar 

  • Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, Lu H, Hu T, Yao N, Liu K, Li Y, Fan D, Guo Y, Li W, Lu Y, Weng Q, Zhou C, Zhang L, Huang T, Zhao Y, Zhu C, Liu X, Yang X, Wang T, Miao K, Zhuang C, Cao X, Tang W, Liu G, Liu Y, Chen J, Liu Z, Yuan L, Liu Z, Huang X, Lu T, Fei B, Ning Z, Han B, Jiang Z (2013a) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45(4):456–461 (461e451–452)

    Article  CAS  Google Scholar 

  • Peng Z, Zhang C, Zhang Y, Hu T, Mu S, Li X, Gao J (2013b) Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS ONE 8(11):e78944

    Article  CAS  Google Scholar 

  • Qiao G, Yang H, Zhang L, Han X, Liu M, Jiang J, Jiang Y, Zhuo R (2014) Enhanced cold stress tolerance of transgenic Dendrocalamus latiflorus Munro (Ma bamboo) plants expressing a bacterial CodA gene. Vitro Cell Dev-PL 50(4):385–391

    Article  CAS  Google Scholar 

  • Sarangthem K, Singh TN (2010) Bamboo: its prospects as food and medicine. J Bamboo Rattan 9(1–2):65–72

    Google Scholar 

  • Shen J, Fu J, Ma J, Wang X, Gao C, Zhuang C, Wan J, Jiang L (2014) Isolation, culture, and transient transformation of plant protoplasts. Curr Protoc Cell Biol 63(1):1–7

    Article  Google Scholar 

  • Shinjiro O (2005) Callus and cell suspension culture of bamboo plant, Phyllostachys nigra. Plant Biotechnol 22(2):119–125

    Article  Google Scholar 

  • Sofiari E, Raemakers CJJMR, Bergervoet JEM, Jacobsen E, Visser RGF (1998) Plant regeneration from protoplasts isolated from friable embryogenic callus of cassava. Plant Cell Rep 18(1–2):159–165

    Article  CAS  Google Scholar 

  • Song X, Peng C, Zhou G, Jiang H, Wang W, **ang W (2013) Climate warming-induced upward shift of Moso bamboo population on Tianmu Mountain. China J MT Sci 10(3):363–369

    Article  Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58(6):318–320

    Article  Google Scholar 

  • Tsuda K, Qi Y, le Nguyen V, Bethke G, Tsuda Y, Glazebrook J, Katagiri F (2012) An efficient Agrobacterium-mediated transient transformation of Arabidopsis. Plant J 69(4):713–719

    Article  CAS  Google Scholar 

  • Vasil V, Vasil IK (1987) Formation of callus and somatic embryos from protoplasts of a commercial hybrid of maize (Zea mays L.). Theor Appl Genet 73(6):793–798

    Article  CAS  Google Scholar 

  • Verma A, Nain V, Kumari C, Singh SK, Lakshmi Narasu M, Ananda Kumar P (2008) Tissue specific response of Agrobacterium tumefaciens attachment to Sorghum bicolor (L) Moench. Physiol Mol Biol Pla 14(4):307–313

    Article  CAS  Google Scholar 

  • Wang S, Pei J, Li J, Tang G, Zhao J, Peng X, Nie S, Ding Y, Wang C (2019a) Sucrose and starch metabolism during Fargesia yunnanensis shoot growth. Physiol Plantarum 168(1):188–204

    Article  Google Scholar 

  • Wang Y, Sun X, Ding Y, Fei Z, Jiao C, Fan M, Yao B, **n P, Chu J, Wei Q (2019b) Cellular and molecular characterization of a thick wall variant reveal a pivotal role of shoot apical meristem in bamboo culm transversal evolution. J Exp Bot 70(15):3911–3926

    Article  CAS  Google Scholar 

  • Wang Y, Zhong B, Shafi M, Ma J, Guo J, Wu J, Ye Z, Liu D, ** H (2019c) Effects of biochar on growth, and heavy metals accumulation of moso bamboo (Phyllostachy pubescens), soil physical properties, and heavy metals solubility in soil. Chemosphere 219:510–516

    Article  CAS  Google Scholar 

  • Wei Q, Jiao C, Guo L, Ding Y, Cao J, Feng J, Dong X, Mao L, Sun H, Yu F (2017) Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots. New Phytol 214(1):81–96

    Article  CAS  Google Scholar 

  • Wu F, Hanzawa Y (2018) A simple method for isolation of soybean protoplasts and application to transient gene expression analyses. J Vis Exp 2018(131):57258

    Google Scholar 

  • Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidopsis Sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16

    Article  Google Scholar 

  • Wu JZ, Liu Q, Geng XS, Li KM, Luo LJ, Liu JP (2017) Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnol 17(1):29

    Article  Google Scholar 

  • **e L, Zong N, Zhao J (2014) Effects of plant growth conditions on maize protoplast transformation. J Agric Sci Tech 16(5):147–153

    CAS  Google Scholar 

  • **ong L, Li C, Li H, Lyu X, Zhao T, Liu J, Zuo Z, Liu B (2019) A transient expression system in soybean mesophyll protoplasts reveals the formation of cytoplasmic GmCRY1 photobody-like structures. Sci China Life Sci 62(8):1070–1077

    Article  CAS  Google Scholar 

  • Ye S, Cai C, Ren H, Wang W, **ang M, Tang X, Zhu C, Yin T, Zhang L, Zhu Q (2017) An efficient plant regeneration and transformation system of Ma Bamboo (Dendrocalamus latiflorus Munro) started from young shoot as explant. Front Plant Sci 8:1298

    Article  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protoc 2(7):1565–1572

    Article  CAS  Google Scholar 

  • Zeng H, Lu Y, Yang X, Xu Y, Lin X (2015) Ectopic expression of the BoTFL1-like gene of Bambusa oldhamii delays blossoming in Arabidopsisthaliana and rescues the tfl1 mutant phenotype. Genet Mol Res 14(3):9306–9317

    Article  CAS  Google Scholar 

  • Zeng H, **e Y, Liu G, Wei Y, Hu W, Shi H (2019) Agrobacterium-mediated gene transient overexpression and Tobacco Rattle Virus (TRV)-based gene silencing in Cassava. Int J Mol Sci 20(16):3976

    Article  CAS  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7(1):30

    Article  CAS  Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807

    Article  CAS  Google Scholar 

  • Zhao J, Gao P, Li C, Lin X, Guo X, Liu S (2019) PhePEBP family genes regulated by plant hormones and drought are associated with the activation of lateral buds and seedling growth in Phyllostachys edulis. Tree Physiol 39(8):1378–1404

    Article  Google Scholar 

  • Zheng L, Liu G, Meng X, Li Y, Wang Y (2012) A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochem Genet 50(9–10):761–769

    Article  CAS  Google Scholar 

  • Zheng Z, Yang X, Fu Y, Zhu L, Wei H, Lin X (2017) Overexpression of PvPin1, a bamboo homolog of PIN1-Type Parvulin 1, delays flowering time in transgenic Arabidopsis and rice. Front Plant Sci 8:1526

    Article  Google Scholar 

  • Zhou M, Zhang Y, Tang D (2011) Characterization and primary functional analysis of BvCIGR, a member of the GRAS gene family in Bambusa ventricosa. Bot Rev 77(3):233–241

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFD0600101), the National Natural Science Foundation of China Grant (Grant No. 31971734 and 31800566), and technological innovation team in University of Fujian province (No. 118/KLA18069A). We thank Plant Bio Press Editing for editing work.

Author information

Authors and Affiliations

Authors

Contributions

LG conceived and designed the project. KC conducted the experiment and analyzed the data with the help from KH, FX, HW, PG, JL, WT, XL, and HZ. KC, MVK, and LG and wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Lianfeng Gu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Hu, K., **, F. et al. High-Efficient and Transient Transformation of Moso Bamboo (Phyllostachys edulis) and Ma Bamboo (Dendrocalamus latiflorus Munro). J. Plant Biol. 66, 75–86 (2023). https://doi.org/10.1007/s12374-020-09294-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09294-y

Keywords

Navigation