Log in

Targeting a Sustainable Sugar Crops Processing Industry: A Review (Part II): Reuse and Conversion Technologies

  • S.I. : Diversification of Sugar Crops for Value Addition
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sustainability of the sugar crops harvesting and processing industry is closely associated with valorization of its byproducts via conversion into beneficial bioproducts, biomaterials, biochemicals, and biofuels, with potential in agricultural, pharmaceutical, and industrial applications. Sugar crops are versatile in that they include a rich sugar fraction (sucrose, glucose, and fructose) in addition to fiber (cellulose, hemicellulose, and lignin). Byproducts such as leaves and tops can be used for fodder; bagasse and molasses for fuel and chemicals and press mud as fertilizer, and these encompass just a few examples of a myriad of applications. A detailed review of the state-of-the-art value-added conversion technologies for these byproducts is described in detail herein. Some technologies generate multiple co-products simultaneously, making the conversion more economically attractive and competitive toward traditional materials. There is also the opportunity for the creation of new jobs and markets for the dissemination of these products. In the first of two manuscripts, production of these byproducts is detailed together with their specific physicochemical properties and applications. This second manuscript is a review of the value-added conversion technologies for these byproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbès, B., C. Lacoste, C. Bliard, C. Maalouf, F. Simescu-Lazar, F. Bogard, and G. Polidori. 2020. Novel extruded starch-beet pulp composites for packaging foams. Materials 13: 1571. https://doi.org/10.3390/ma13071571.

    Article  CAS  PubMed Central  Google Scholar 

  • Agredo, J.T., R. Mejia, C.E.E. Giraldo, and L.O.G. Salcedo. 2014. Characterization of sugar cane bagasse ash as supplementary material for Portland cement. Ingenieria e Investigacion 34(1): 5–10. https://doi.org/10.15446/ing.investig.v34n1.42787.

    Article  CAS  Google Scholar 

  • Ahmedna, M., W.E. Marshall, and R.M. Rao. 2000. Surface properties of granular activated carbons from agricultural by-products and their effects on raw sugar decolorization. Bioresource Technology 71: 103–112.

    Article  CAS  Google Scholar 

  • Albarelli, J.Q., D.T. Santos, and M.A.A. Meireles. 2018. Thermo-economic evaluation of a new approach to extract sugarcane wax integrated to a first and second generation biorefinery. Biomass and Bioenergy 119: 69–74. https://doi.org/10.1016/j.biombioe.2018.09.018.

    Article  CAS  Google Scholar 

  • Alexander, K.E.F. 1972. A note on the analysis of composite samples of filter-cake from South African sugar factories. Processing South AfricanSugar Technology Association 46: 224–225.

    CAS  Google Scholar 

  • Ali, I., Z.A. Al-Othman, A. Alwarthan, M. Asim, and T.A. Khan. 2014. Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environmental Science and Pollution Research International 21: 3218–3229. https://doi.org/10.1007/s11356-013-2235-3.

    Article  CAS  PubMed  Google Scholar 

  • Alves, M., G.H.S.F. Ponce, M.A. Silva, and A.V. Ensinas. 2015. Surplus electricity production in sugarcane mills using residual bagasse and straw as fuel. Energy 91: 751–757. https://doi.org/10.1016/j.energy.2015.08.101.

    Article  CAS  Google Scholar 

  • Amin, N.K. 2008. Removal of reactive dye from aqueous solutions byadsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223(1–3): 152–161. https://doi.org/10.1016/j.desal.2007.01.203.

    Article  CAS  Google Scholar 

  • Andrade, M.F., and J.L. Colodette. 2014. Dissolving pulp production from sugar cane bagasse. Industrial Crops and Products 52: 58–64. https://doi.org/10.1016/j.indcrop.2013.09.041.

    Article  CAS  Google Scholar 

  • Anukam, A., S. Mamphweli, P. Reddy, E. Meyer, and O. Okoh. 2016. Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review. Renewable and Sustainable Energy Reviews 66: 775–801.

    Article  CAS  Google Scholar 

  • Ariyani, S.A., L.K. Nuswantara, E. Pangestu, F. Wahyono, and J. Achmadi. 2014. Parameters of protein metabolism in goats fed diets with different portion of sugarcane bagasse. Journal of the Indonesian Tropical Animal Agriculture 39: 111–116.

    Article  Google Scholar 

  • Arni, S.A. 2018. Extraction and isolation methods for lignin separation from sugarcane bagasse: A review. Industrial Crops and Production 115: 330–339. https://doi.org/10.1016/j.indcrop.2018.02.012.

    Article  CAS  Google Scholar 

  • Arruda, B., M. Rodrigues, T. Gumiere, A.E. Richardson, F.D. Andreote, A. Soltangheisi, L.C. Gatiboni, and P.S. Pavinato. 2019. The impact of sugarcane filter cake on the availability of P in the rhizosphere and associated microbial community structure. Soil Use and Management 35(2): 334–345.

    Article  Google Scholar 

  • Aruna, N., A.K. Sharma. Bagotia, and S. Kumar. 2021. A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere 268: 129309. https://doi.org/10.1016/j.chemosphere.2020.129309.

    Article  CAS  PubMed  Google Scholar 

  • Atchison, J.E. 1989. Producing pulp and paper from sugarcane bagasse: A worldwide perspective. Sugar y Azucar 84: 89–100.

    Google Scholar 

  • Athira, G., A. Bahurudeen, and S. Appari. 2021. Thermochemical conversion of sugarcane bagasse: Composition, reaction kinetics, and characterisation of by-products. Sugar Tech 23(2): 433–452. https://doi.org/10.1007/s12355-020-00865-4.

    Article  CAS  Google Scholar 

  • Azevedo, E.B., C.S. Marinho, R.A. Muniz, and A.J.C. Carvalho. 2009. Substratos fertilizados com ureia revestida e o crescimento e estado nutricional da muda de citros. Acta Scientiarum. Agronomy 31(1): 129–137.

    Article  CAS  Google Scholar 

  • Balaji, A., B. Karthikeyan, and C. Sundar Raj. 2014–2015. Bagasse fiber—The future biocomposite material: A review. International Journal of ChemTech Research 7(1): 223–233.

  • Bernardo, E.C., R. Egashira, and J. Kawaski. 1997. Decolorization of molasses wastewaterusing activated carbon prepared from cane bagasse. Carbon 35(9): 1217–1221.

    Article  CAS  Google Scholar 

  • Bezerra, T.L., and A.J. Ragauskas. 2016. A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels, Bioproducts and Biorefining 10(5): 634–647. https://doi.org/10.1002/bbb.1662.

    Article  CAS  Google Scholar 

  • Bhosale, P., G.C. Sonal, and P.D. Raut. 2012. Studies on extraction of sugarcane wax from press mud of sugar factories from Kolhapur district, Maharashtra. Journal of Environmental Research & Development 6(3A): 715–720.

    Google Scholar 

  • Bracmort, K.S. 2010. Biochar: Examination of an Emerging Concept to Mitigate Climate Change; Report for Congress R40186. Congressional Research Service, Washington, DC, USA.

  • Brito, A.F., K.J. Soder, P.Y. Chouinard, S.F. Reis, S. Ross, M.D. Rubano, and M.D. Casler. 2017. Production performance and milk fatty acid profile in grazing dairy cows offered ground corn or liquid molasses as the sole supplemental nonstructural carbohydrate source. Journal of Dairy Science 100: 8146–8160. https://doi.org/10.3168/jds.2017-12618.

    Article  CAS  PubMed  Google Scholar 

  • Budiyanto, G. 2021. The effect of combination of sugarcane pressmud compost and potassium fertilizer on vegetative growth of corn in coastal sandy soil. Food Research 5(3): 289–296. https://doi.org/10.26656/fr.2017.5(3).630.

    Article  Google Scholar 

  • Caione, G., R. de Mello Prado, C.N. Campos, L. Rosatto Moda, R. de Lima Vasconcelos, and J.M. Pizauro Jr. 2015. Response of sugarcane in a red ultisol to phosphorus rates, phosphorus sources, and filter cake. The Scientific World Journal. https://doi.org/10.1155/2015/405970.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cárdenas-Cleves, L.M., L.F. Marmolejo-Rebellón, and P. Torres-Lozada. 2018. Anaerobic codigestion of sugarcane press mud with food waste: Effects on hydrolysis stage, methane yield, and synergistic effects. International Journal of Chemical Engineering 2018: 1–8. https://doi.org/10.1155/2018/9351848.

    Article  CAS  Google Scholar 

  • Cardona, C.A., J.A. Quintero, and I.C. Paz. 2010. Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresources Technology 101(13): 4754–4766. https://doi.org/10.1016/j.biortech.2009.10.097.

    Article  CAS  Google Scholar 

  • Cardoso, A.R.T., N.M. Conrado, M.C. Krause, T.R. Bjerk, L.C. Krause, and E.B. Caramão. 2019. Chemical characterization of the bio-oil obtained by catalytic pyrolysis of sugarcane bagasse (industrial waste) from the species Erianthus arundinaceus. Journal of Environmental Chemical Engineering 7(2): 02970. https://doi.org/10.1016/j.jece.2019.102970.

    Article  CAS  Google Scholar 

  • Carpio, L.G.T., and F. Simone de Souza. 2017. Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: Scenarios of cost reductions. Renewable Energy 111: 771–780. https://doi.org/10.1016/j.renene.2017.05.015.

    Article  CAS  Google Scholar 

  • Carvalho, S.T.M., L.M. Mendes, A.A.S. Cesar, J.B. Flórez, and F.A. Mori. 2015. Acoustic characterization of sugarcane bagasse particleboard panels (Saccharum officinarum L.). Materials Research Journal 18: 821–827.

    Article  CAS  Google Scholar 

  • Casas, L., Y. Hernández, C. Mantell, N. Casdelo, and E. Martinez de la Ossa. 2015. Filter cake oil-wax as raw material for the production of biodiesel: Analysis of the extraction process and the transesterification reaction. Journal of Chemistry. 2015: 946462 https://doi.org/10.1155/2015/946462.

    Article  CAS  Google Scholar 

  • Chai, B.H., H.C. Meng, Z.G. Zhao, Q. Huang, and X. Fu. 2015. Removal of color compounds from sugarcane juice by modified sugarcane bagasse: Equilibrium and kinetic study. Sugar Tech 18(3): 317–324. https://doi.org/10.1007/s12355-015-0415-9.

    Article  CAS  Google Scholar 

  • Chandel, A.K., S.S. da Silva, W. Carvalho, and O.V. Singh. 2012. Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. Journal of Chemical Technology & Biotechnology 87(1): 11–20. https://doi.org/10.1002/jctb.2742.

    Article  CAS  Google Scholar 

  • Chen, J.C.P., and C.C. Chung. 1993. Cane Sugar Handbook: A Manual for Cane Sugar Manufacturers and Their Chemists. New York: Wiley.

    Google Scholar 

  • Chen, S., W. Zheng, W. Liu, L. Liu, and W. Sun. 2020. Optimization and purification of levulinic acid extracted from bagasse. Sugar Tech 22(5): 830–841. https://doi.org/10.1007/s12355-020-00819-w.

    Article  CAS  Google Scholar 

  • Chingono, K.E., E. Sanganyado, E. Bere, and B. Yalala. 2018. Adsorption of sugarcane vinasse effluent on bagasse fly ash: A parametric and kinetic study. Journal of Envionmental Management. 224: 182–190. https://doi.org/10.1016/j.jenvman.2018.07.042.

    Article  CAS  Google Scholar 

  • Corrêa do Lago, A., A. Bonomi, O. Cavalett, M. Pereira da Cunha, and M.A. Pinheiro Lima. 2012. Sugarcane as a carbon source: The Brazilian case. Biomass and Bioenergy 46: 5–12. https://doi.org/10.1016/j.biombioe.2012.09.007.

    Article  CAS  Google Scholar 

  • David, G.F., O.R. Justo, V.H. Perez, and M. Garcia-Perez. 2018. Thermochemical conversion of sugarcane bagasse by fast pyrolysis: High yield of levoglucosan production. Journal of Analytical & Applied Pyrolysis 133: 246–253. https://doi.org/10.1016/j.jaap.2018.03.004.

    Article  CAS  Google Scholar 

  • Da Mota, R.P., R. de Camargo, E.M. Lemes, R.M.Q. Lana, R.F. de Almeida, and E.R. de Moraes. 2018. Biosolid and sugarcane filter cake in the composition of organomineral fertilizer on soybean responses. International Journal of Recycling of Organic Waste in Agriculture 8(2): 131–137. https://doi.org/10.1007/s40093-018-0237-3.

    Article  Google Scholar 

  • De Almeida, M.A., and R. Colombo. 2021. Production chain of first-generation sugarcane bioethanol: Characterization and value-added application of wastes. BioEnergy Research. https://doi.org/10.1007/s12155-021-10301-4.

    Article  Google Scholar 

  • De Araujo Guilherme, A., P.V.F. Dantas, C.E.A. Padilha, E.S. Dos Santos, and G.R. de Macedo. 2019. Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process. Journal of Environmental Management 234: 44–51. https://doi.org/10.1016/j.jenvman.2018.12.102.

    Article  CAS  PubMed  Google Scholar 

  • De Lucas, A., A. Garcia, A. Alvarez, and I. Gracia. 2007. Supercritical extraction of long chain n-alcohols from sugar cane crude wax. The Journal of Supercritical Fluids 41(2): 267–271. https://doi.org/10.1016/j.supflu.2006.09.013.

    Article  CAS  Google Scholar 

  • DeLuca, T.H., M.D. MacKenzie, and M.J. Gundale. 2009. Biochar effects on soil nutrient transformations. In Biochar for Environmental Management: Science and Technology, ed. J. Lehmann and S. Joseph, 251–270. London: Earthscan.

    Google Scholar 

  • Diaz, P.M. 2016. Consequences of compost press mud as fertilizers. DJ International Journal of Advances in Microbiology & Microbiological Research 1(1): 28–32. https://doi.org/10.18831/djmicro.org/2016011005.

    Article  Google Scholar 

  • Ding, W., X. Dong, I.M. Ime, B. Gao, and L.Q. Ma. 2014. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105: 68–74. https://doi.org/10.1016/j.chemosphere.2013.12.042.

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos, M.F.N., R.A.G. Battistelle, B.S. Bezerra, and H.S.A. Varum. 2014. Comparative study of the life cycle assessment of particleboards made of residues from sugarcane bagasse (Saccharum spp.) and pine wood shavings (Pinus elliottii). Journal of Cleaner Production. 64: 345–355.

    Article  CAS  Google Scholar 

  • Eggleston, G., and I. Lima. 2015. Sustainability issues and opportunities in the sugar and sugar-bioproduct industries. Sustainability. 7: 12209–12235. https://doi.org/10.3390/su70912209.

    Article  CAS  Google Scholar 

  • Elzobair, K.A., M.E. Stromberger, J.A. Ippolito, and R.D. Lentz. 2016. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere 142: 145–152.

    Article  CAS  PubMed  Google Scholar 

  • ENplus 2011. European Standard for wood pellets. EN 14961-2. Retrieved at: https://enplus-pellets.eu/en-in/.

  • Erlich, C., M. Ohman, E. Björnborn, and T.H. Fransson. 2005. Thermochemical characteristics of sugarcane bagasse pellets. Fuel 84: 569–575. https://doi.org/10.1016/j.fuel.2004.10.005.

    Article  CAS  Google Scholar 

  • Finkenstadt, V.L. 2013. A Review on the complete utilization of the sugarbeet. Sugar Tech 16(4): 339–346. https://doi.org/10.1007/s12355-013-0285-y.

    Article  Google Scholar 

  • Fishman, M.L., H.K. Chau, D.R. Coffin, P.H. Cooke, P. Qi, M.P. Yadav, and A.T. Hotchkiss. 2011. Physico-chemical characterization of a cellulosic fraction from sugar beet pulp. Cellulose 18(3): 787–801. https://doi.org/10.1007/s10570-011-9521-3.

    Article  CAS  Google Scholar 

  • Fishman, M.L., H.K. Chau, P.H. Cooke, M.P. Yadav, and A.T. Hotchkiss. 2009. Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp. Food Hydrocolloids 23(6): 1554–1562. https://doi.org/10.1016/j.foodhyd.2008.10.015.

    Article  CAS  Google Scholar 

  • Fishman, M.L., H.K. Chau, P.X. Qi, A.T. Hotchkiss Jr., and M.P. Yadav. 2013. Physico-chemical characterization of protein-associated polysaccharides extracted from sugar beet pulp. Carbohydrate Polymers 92(2): 2257–2266. https://doi.org/10.1016/j.carbpol.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  • Franco-Luján, V.A., M.A. Maldonado- García, J.M. Mendoza-Rangel, and P. Montes-García. 2019. Chloride-induced reinforcing steel corrosion in ternary concretes containing fly ash and untreated sugarcane bagasse ash. Construction and Building Materials 198: 608–618.

    Article  CAS  Google Scholar 

  • Freitas, J.V., and C.S. Farinas. 2017. Sugarcane bagasse fly ash as a no-cost adsorbent for removal of phenolic inhibitors and improvement of biomass saccharification. ACS Sustainable Chemical Engineering 5(12): 11727–11736. https://doi.org/10.1021/acssuschemeng.7b03214.

    Article  CAS  Google Scholar 

  • Freitas, J.V., L.A.M. Ruotolo, and C.S. Farinas. 2019. Adsorption of inhibitors using a CO2-activated sugarcane bagasse fly ash for improving enzymatic hydrolysis and alcoholic fermentation in biorefineries. Fuel 251: 1–9. https://doi.org/10.1016/j.fuel.2019.04.032.

    Article  CAS  Google Scholar 

  • Garcia-Perez, M., A. Chaala, and C. Roy. 2002. Vacuum pyrolysis of sugarcane bagasse. Journal of Analytical & Applied Pyrolysis 65(2): 111–136. https://doi.org/10.1016/S0165-2370(01)00184-X.

    Article  CAS  Google Scholar 

  • George, P.A.O., J.J.C. Eras, A.S. Gutierrez, L. Hens, and C. Vandecasteele. 2010. Residue from sugarcane juice filtration (filter cake): Energy use at the sugar factory. Waste and Biomass Valorization 1(4): 407–413. https://doi.org/10.1007/s12649-010-9046-2.

    Article  CAS  Google Scholar 

  • German, L.A. 2003. Historical contingencies in the coevolution of environment and livelihood: Contributions to the debate on Amazonian Black Earth. Geoderma 111: 307–331.

    Article  Google Scholar 

  • Gilbert, R.A., D.R. Morris, C.R. Rainbolt, J.M. McCray, R.E. Perdomo, B. Eiland, G. Powell, and G. Montes. 2008. Sugarcane response to mill mud, fertilizer, and soybean nutrient sources on a sandy soil. Agronomy Journal. https://doi.org/10.2134/agronj2007.0247.

    Article  Google Scholar 

  • Gouda, M.K., A.E. Swellam, and S.H. Omar. 2001. Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiological Research 156(3): 201–207. https://doi.org/10.1078/0944-5013-00104.

    Article  CAS  PubMed  Google Scholar 

  • Gul, S., J.K. Whalen, B.W. Thomas, V. Sachdeva, and H. Deng. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment 206: 46–59.

    Article  CAS  Google Scholar 

  • Gupta, V.K., and I. Ali. 2001. Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Research 35(1): 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, V.K., D. Mohan, and S. Sharma. 1998. Removal of lead from wastewater using bagasse fly ash—A sugar industry waste material. Separation Science & Technology 33(9): 1331–1343. https://doi.org/10.1080/01496399808544986.

    Article  CAS  Google Scholar 

  • Gupta, V.K., D. Mohan, S. Sharma, and M. Sharma. 2000. Removal of basic dyes (rhodamine B and methylene blue) from aqueous solutions using bagasse fly ash. Separation Science & Technology 35: 2097–2113. https://doi.org/10.1081/SS-100102091.

    Article  CAS  Google Scholar 

  • Gupta, N., S. Tripathi, and C. Balomajumder. 2011. Characterization of pressmud: A sugar industry waste. Fuel 90(1): 389–394. https://doi.org/10.1016/j.fuel.2010.08.021.

    Article  CAS  Google Scholar 

  • Hass, A., and I. Lima. 2018. Effect of feed source and pyrolysis conditions on properties and metal sorption by sugarcane biochar. Environmental Technology & Innovation. 10: 16–26.

    Article  Google Scholar 

  • Hassan, E.B., H. Abou-Yousef, and P. Steele. 2012. Increasing the efficiency of fast pyrolysis process through sugar yield maximization and separation from aqueous fraction bio-oil. Fuel Processing Technology 110: 65–72.

    Article  CAS  Google Scholar 

  • Hofsetz, K., and M.A. Silva. 2012. Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass and Bioenergy 46: 564–573. https://doi.org/10.1016/j.biombioe.2012.06.038.

    Article  Google Scholar 

  • Hotchkiss, A., M. Fishman, and L. Liu. 2010. The role of sugar beet pulp polysaccharides in the sustainability of the sugar beet industry. In Sustainability of the Sugar and Sugar−Ethanol Industries, ACS Symposium Series. G. Eggleston. 1058, 283–290. https://DOI: 10.1021/bk-2010-1058.ch017. ISBN13: 9780841225985. eISBN: 9780841225992.

  • Hu, X.F., Y. Jiang, Y. Shu, X. Hu, L. Liu, and F. Luo. 2014. Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. Journal of Geochemical Exploration 147: 139–150.

    Article  CAS  Google Scholar 

  • Huang, G., X. Chen, C. Wang, H. Zheng, Z. Huang, D. Chen, and H. **e. 2017. Photoluminescent carbon dots derived from sugarcane molasses: Synthesis, properties, and applications. RSC Advances 7: 47840–47847. https://doi.org/10.1039/C7RA09002A.

    Article  CAS  Google Scholar 

  • Huang, C.H., and R.A. Doong. 2012. Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly. Microporous and Mesoporous Materials 147(1): 47–52. https://doi.org/10.1016/j.micromeso.2011.05.027.

    Article  CAS  Google Scholar 

  • Hudson, C. (Ed.). 1994. Composting in sugarcane industries. In Proceedings of the West Indies Sugar Technologists XXV Conference, Belize.

  • IBI. 2014. IBI Biochar Standards Version 2.0. Proposed Policy Revision: Material derived from biomass fly ash by Debbie Reed and Stefan Jirka.

  • Igalavithana, A.D., S.E. Lee, Y.H. Lee, D.C.W. Tsang, J. Rinklebe, E.E. Kwon, and Y.S. Ok. 2017. Heavy metal immobilization and microbial community abundance by vegetable waste and pinecone biochar of agricultural soils. Chemosphere 174: 593–603.

    Article  CAS  PubMed  Google Scholar 

  • Inyang, M., B. Gao, P. Pullammanappallil, W. Ding, and A.R. Zimmerman. 2010. Biochar from anaerobically digested sugarcane bagasse. Bioresources Technology 101(22): 8868–8872. https://doi.org/10.1016/j.biortech.2010.06.088.

    Article  CAS  Google Scholar 

  • Iqbal, R., M.A.S. Raza, M. Valipour, M.F. Saleem, M.S. Zaheer, S. Ahmad, M. Toleikiene, I. Haider, M.U. Aslam, and M.A. Nazar. 2020. Potential agricultural and environmental benefits of mulches—A review. Bulletin of the National Research Centre 44: 75. https://doi.org/10.1186/s42269-020-00290-3.

    Article  Google Scholar 

  • Isahak, W.N.R.W., M.W.M. Hisham, M.A. Yarmo, and T.Y. Hin. 2012. A review on bio-oil production from biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews 16: 5910–5923.

    Article  CAS  Google Scholar 

  • Jagadesh, P., A. Ramachandramurthy, and R. Murugesan. 2018. Evaluation of mechanical properties of sugar cane bagasse ash concrete. Construction and Building Materials 176: 608–617. https://doi.org/10.1016/j.conbuildmat.2018.05.037.

    Article  CAS  Google Scholar 

  • James, J. 2020. Sugarcane press mud modification of expansive soil stabilized at optimum lime content: Strength, mineralogy and microstructural investigation. Journal of Rock Mechanics and Geotechnical Engineering 12(2): 395–402. https://doi.org/10.1016/j.jrmge.2019.10.005.

    Article  Google Scholar 

  • Janke, L., A. Leite, K. Batista, S. Weinrich, H. Strauber, M. Nikolausz, and W. Stinner. 2016. Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: Effects of urea supplementation and sodium hydroxide pretreatment. Bioresources Technology 199: 235–244. https://doi.org/10.1016/j.biortech.2015.07.117.

    Article  CAS  Google Scholar 

  • Janke, L., A. Leite, M. Nikolausz, T. Schmidt, J. Liebetrau, M. Nelles, and W. Stinner. 2015. Biogas production from sugarcane waste: Assessment on kinetic challenges for process designing. International Journal of Molecular Sciences 16(9): 20685–20703. https://doi.org/10.3390/ijms160920685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janke, L., S. Weinrich, A.F. Leite, H. Sträuber, M. Nikolausz, M. Nelles, and W. Stinner. 2019. Pre-treatment of filter cake for anaerobic digestion in sugarcane biorefineries: Assessment of batch versus semi-continuous experiments. Renewable Energy 143: 1416–1426. https://doi.org/10.1016/j.renene.2019.05.029.

    Article  CAS  Google Scholar 

  • Jayamani, E., M.R. Rahman, D.A. Benhur, M.K. Bin Bakri, A. Kakar, and A. Khan. 2020. Comparative study of fly ash/sugarcane fiber reinforced polymer composites properties. BioResources 15(3): 5514–5531. https://doi.org/10.15376/biores.15.3.5514-5531.

    Article  CAS  Google Scholar 

  • Johns, M.M., C.A. Toles, and W.E. Marshall. 2003. Activated Carbons from Low-Density Agricultural Waste. U.S. Patent 6, 537, 947.

  • Karnitz, O., Jr., L.V.A. Gurgel, J.C.P. de Melo, V.R. Botaro, T.M.S. Melo, R.P. de Freitas Gil, and L.F. Gil. 2007. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresource Technology 98: 1291–1297. https://doi.org/10.1016/j.biortech.2006.05.013.

    Article  CAS  PubMed  Google Scholar 

  • Kameyama, K., T. Miyamoto, T. Shiono, and Y. Shinogi. 2012. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. Journal of Environmental Quality 41: 1131–1137.

    Article  CAS  PubMed  Google Scholar 

  • Karkania, V., E. Fanara, and A. Zabaniotou. 2012. Review of sustainable biomass pellets production—A study for agricultural residues pellets’ market in Greece. Renewable and Sustainable Energy Reviews 16(3): 1426–1436.

    Article  Google Scholar 

  • Kartel, M.T., L.A. Kupchik, and B.K. Veisov. 1999. Evaluation of pectin binding of heavy meal ions in aqueous solutions. Chemosphere 38(11): 2591–2596.

    Article  CAS  PubMed  Google Scholar 

  • Katakojwala, R., A. Naresh Kumar, D. Chakraborty, and S.V. Mohan. 2019. Valorization of sugarcane waste: Prospects of a biorefinery. In Industrial and Municipal Sludge, Emerging concerns and Scope for Resource Recovery. 2019: 47–60. https://doi.org/10.1016/B978-0-12-815907-1.00003-9.

    Article  Google Scholar 

  • Kaushik, A., S. Basu, V.S. Batra, and M. Balakrishnan. 2018. Fractionation of sugarcane molasses distillery wastewater and evaluation of antioxidant and antimicrobial characteristics. Industrial Crops and Products 118: 73–80. https://doi.org/10.1016/j.indcrop.2018.03.040.

    Article  CAS  Google Scholar 

  • Khan, S.U., X. Wang, T. Mehmood, S. Latıf, S.U. Khan, S. Fiaz, and A. Qayyum. 2021. Comparison of organic and inorganic mulching for weed suppression in wheat under rain-fed conditions of Haripur, Pakistan. Agronomy. https://doi.org/10.3390/agronomy11061131.

    Article  Google Scholar 

  • Khoo, R.Z., W.S. Chow, and H. Ismail. 2018. Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: A review. Cellulose 25(8): 4303–4330. https://doi.org/10.1007/s10570-018-1879-z.

    Article  CAS  Google Scholar 

  • Khwairakpam, M., and R. Bhargava. 2009. Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Bioresources Technology 100(23): 5846–5852.

    Article  CAS  Google Scholar 

  • Klasson, K.T. 2012. Char from sugarcane bagasse. In Biorefinery Co-products: Phytochemicals, Primary Metabolites and Value-Added Biomass Processing, vol. 361, ed. J. Carrier, S. Ramaswamy, and C. Bergeron, 327–350. Chichester: Wiley.

    Chapter  Google Scholar 

  • Klibansky, M., M.A. León, F. Brizuela, M. Altuna, and B.L. González. 1993. Evaluation of a commercial inoculant with regard to the kinetics of making compost from sugar industry byproducts. Revista Icidca Sobre Los Derivados De La Caña De Azúcar 27(1): 41–47.

    Google Scholar 

  • Kühnel, S., H.A. Schols, and H. Gruppen. 2011. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnology for Biofuels 4: 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, V., and A.K. Chopra. 2016. Effects of sugarcane pressmud on agronomical characteristics of hybrid cultivar of eggplant (Solanum melongena L.) under field conditions. International Journal of Recycling of Organic Waste in Agriculture 5(2): 149–162. https://doi.org/10.1007/s40093-016-0125-7.

    Article  Google Scholar 

  • Kumar, A., B. Prasad, and I.M. Mishra. 2014. Adsorption of acrylonitrile from aqueous solution using bagasse fly ash. Journal of Water Process Engineering 2: 129–133. https://doi.org/10.1016/j.jwpe.2014.05.003.

    Article  Google Scholar 

  • Kumar, R., S.K. Saha, D. Kumar, M.S. Mahesh, and C.D. Malapure. 2017. Effect of dietary utilisation of sugarcane press mud on production performance of Muzaffarnagari lambs. Tropical Animal Health and Production 49(7): 1439–1446. https://doi.org/10.1007/s11250-017-1345-1.

    Article  PubMed  Google Scholar 

  • Kuroda, K., T. Chosei, N. Nakahara, M. Hatamoto, T. Wakabayashi, T. Kawai, N. Araki, K. Syutsubo, and T. Yamaguchi. 2015. High organic loading treatment for industrial molasses wastewater and microbial community shifts corresponding to system development. Bioresources Technology 196: 225–234. https://doi.org/10.1016/j.biortech.2015.07.070.

    Article  CAS  Google Scholar 

  • Leechart, P., D. Inthorn, and P. Thiravetyan. 2016. Adsorption of antimony by bagasse fly ash: Chemical modification and adsorption mechanism. Water Environmental Research 88: 907–912. https://doi.org/10.2175/106143015X14362865227030.

    Article  CAS  Google Scholar 

  • Lehmann, J. 2007. Bio-energy in the black. Frontiers in Ecology and the Environment 5: 381–387. https://doi.org/10.1890/1540-9295.

    Article  Google Scholar 

  • Lehmann, J., J. Gaunt, and M. Rondon. 2006. Bio-char sequestration in terrestrial ecosystems—A review. Mitigation and Adaption Strategies for Global Change 11: 403–427.

    Article  Google Scholar 

  • Lehmann, J., M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, and D. Crowley. 2011. Biochar effects on soil biota—A review. Soil Biology and Biochemistry 43: 1812–1836.

    Article  CAS  Google Scholar 

  • Leite, A.F., L. Janke, Z. Lv, H. Harms, H.H. Richnow, and M. Nikolausz. 2015. Improved monitoring of semi-continuous anaerobic digestion of sugarcane waste: Effects of increasing organic loading rate on methanogenic community dynamics. International Journal of Molecular Sciences 16(10): 23210–23226. https://doi.org/10.3390/ijms161023210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemos, S.V., M.S. Denadai, S.P.S. Guerra, M.S.T. Esperancini, O.C. Bueno, and I.C. Takitane. 2014. Economic efficiency of two baling systems for sugarcane straw. Industrial Crops and Products 55: 97–101. https://doi.org/10.1016/j.indcrop.2014.02.010.

    Article  Google Scholar 

  • Li, W., C. Cheng, G. Cao, and N. Ren. 2020. Enhanced biohydrogen production from sugarcane molasses by adding Ginkgo biloba leaves. Bioresources Technology 298: 122523. https://doi.org/10.1016/j.biortech.2019.122523.

    Article  CAS  Google Scholar 

  • Li, Q., X. Guo, Y. Lu, G. Shan, and J. Huang. 2016. Impacts of adding FGDG on the abundance of nitrification and denitrification functional genes during dairy manure and sugarcane pressmud co-composting. Waste Management 56: 63–70. https://doi.org/10.1016/j.wasman.2016.07.007.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., and H. Liu. 2000. High-pressure densification of wood residues to form an upgraded fuel. Biomass-Bioenergy 19(3): 77–86.

    Article  Google Scholar 

  • Lima, I.M. 2019. Sugar Beet Pulp for Production of Biochar. Abstract. Anaheim: American Society of Sugar Beet Technologists.

    Google Scholar 

  • Lima, I.M., and P.M. White Jr. 2017. Sugarcane bagasse and leaf residue biochars as soil amendment for increased sugar and cane yields. International Sugar Journal 119(1421): 354–362.

    Google Scholar 

  • Liu, B., S. Bhaladhare, P. Zhan, L. Jiang, J. Zhang, L. Liu, and A.T. Hotchkiss. 2011. Morphology and properties of thermoplastic sugar beet pulp and poly(butylene adipate-coterepthalate) blends. ACS Industrial and Engineering Chemistry Research 50: 13859–13865. https://doi.org/10.1021/ie2017948.

    Article  CAS  Google Scholar 

  • Loh, Y.R., D. Sujan, M.E. Rahman, and C.A. Das. 2013. Sugarcane bagasse—The future composite material: A literature review. Resources, Conservation and Recycling 75: 14–22.

    Article  Google Scholar 

  • Lopez Gonzalez, L.M., I. Pereda Reyes, J. Dewulf, J. Budde, M. Heiermann, and H. Vervaeren. 2014. Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. Bioresources Technology 169: 284–290. https://doi.org/10.1016/j.biortech.2014.06.107.

    Article  CAS  Google Scholar 

  • Lopez Gonzalez, L.M., I. Pereda Reyes, and O.R. Romero. 2017. Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield. Waste Management 68: 139–145. https://doi.org/10.1016/j.wasman.2017.07.016.

    Article  CAS  PubMed  Google Scholar 

  • Luo, S., S. Wang, L. Tian, S. Li, X. Li, Y. Shen, and C. Tian. 2017. Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Applied Soil Ecology 117–118: 10–15.

    Article  Google Scholar 

  • Makul, N., and G. Sua-Iam. 2016. Characteristics and utilization of sugarcane filter cake waste in the production of lightweight foamed concrete. Journal of Cleaner Production 126: 118–133. https://doi.org/10.1016/j.jclepro.2016.02.111.

    Article  Google Scholar 

  • Mall, I.D., V.C. Srivastava, N.K. Agarwal, and I.M. Mishra. 2005. Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses. Chemosphere 61(4): 492–501. https://doi.org/10.1016/j.chemosphere.2005.03.065.

    Article  CAS  PubMed  Google Scholar 

  • Mani, S., L.G. Tabil, and S. Sokhansanj. 2004. Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy 27(4): 339–352.

    Article  Google Scholar 

  • Marim, R.A., A.C.C. Oliveira, R.S. Marquezoni, J.P.R. Servantes, B.K. Cardoso, G.A. Linde, N.B. Colauto, and J.S. Valle. 2016. Use of sugarcane molasses by Pycnoporus sanguineus for the production of laccase for dye decolorization. Genetics and Molecular Research. https://doi.org/10.4238/gmr15048972.

    Article  PubMed  Google Scholar 

  • Meier, S., G. Curaqueo, N. Khan, N. Bolan, J. Rilling, C. Vidal, N. Fernandez, J. Acuña, M.E. González, and P. Cornejo. 2015. Effects of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil. Journal of Soils and Sediments 17: 1237–1250.

    Article  CAS  Google Scholar 

  • Mendes, F.L., V.L. **menes, M.B.B. de Almeida, D.A. Azevedo, N.S. Tessarolo, and A. de Rezende Pinho. 2016. Catalytic pyrolysis of sugarcane bagasse and pinewood in a pilot scale unit. Journal of Analytical and Applied Pyrolysis 122: 395–404. https://doi.org/10.1016/j.jaap.2016.08.001.

    Article  CAS  Google Scholar 

  • Meunchang, S., S. Panichsakpatana, and R.W. Weaver. 2005. Co-composting of filter cake and bagasse; by-products from a sugar mill. Bioresources Technology 96(4): 437–442.

    Article  CAS  Google Scholar 

  • Miura, T., A. Niswati, I.G. Swibawa, S. Haryani, H. Gunito, M. Arai, K. Yamada, S. Shimano, N. Kaneko, and K. Fujie. 2015. Shifts in the composition and potential functions of soil microbial communities responding to a no-tillage practice and bagasse mulching on a sugarcane plantation. Biology and Fertility of Soils 52(3): 307–322. https://doi.org/10.1007/s00374-015-1077-1.

    Article  CAS  Google Scholar 

  • Mohan, N., S. Awasthi, and A. Agarwal. 2021. Sugar industry-sustainable source of bio-energy/renewable fuel. International Journal of Engineering Research & Technology 10(1): 543–549.

    Google Scholar 

  • Mohan, S., L. Chithra, R. Nageswari, V.M. Selvi, and M. Mathialagan. 2020. Sugarcane wax—A par excellent by-product of sugar industry—A review. Agricultural Reviews 42: 315–321. https://doi.org/10.18805/ag.R-2055.

    Article  Google Scholar 

  • Moosavi, A., and A. Karbassi. 2010. Bioconversion of sugar-beet molasses into xanthan gum. Journal of Food Processing and Preservation 34(2): 316–322. https://doi.org/10.1111/j.1745-4549.2009.00376.x.

    Article  CAS  Google Scholar 

  • Murugesan, T., V. Ramamurthy, and A. Bahurudeen. 2021. Sustainable use of sugarcane bagasse ash and marble slurry dust in crusher sand based concrete. Structural Concrete. https://doi.org/10.1002/suco.202000215.

    Article  Google Scholar 

  • Nie, C., X. Yang, N.K. Niazi, X. Xu, Y. Wen, J. Rinklebe, O.Y. Ok, and HXu. Wang. 2018. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere 200: 274–282.

    Article  CAS  PubMed  Google Scholar 

  • Nigam, P. 1990. Investigation of some factors important for solid-state fermentation of sugar cane bagasse for animal feed production. Enzyme Microbial Technology 12: 808–811.

    Article  CAS  Google Scholar 

  • Niswati, A., S. Yusnaini, M. Utomo, Dermiyati, M.A.S. Arif, S. Haryani, and N. Kaneko. 2018. Long-term organic mulching and no-tillage practice increase population and biomass of earthworm in sugarcane plantation. IOP Conference Series: Earth and Environmental Science, Vol. 215. https://doi.org/10.1088/1755-1315/215/1/012034.

  • NREL. 2013. International Trade of Wood Pellets. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  • O’Hara, I.M., and S.G. Mundree. 2016. Sugarcane-Based Biofuels and Bioproducts. Hoboken: Wiley Blackwell. https://doi.org/10.1002/9781118719862.

    Book  Google Scholar 

  • Okuno, F.M., T.F. Cardoso, D.G. Duft, A.C.D.S. Luciano, J.L.M. Neves, C.C.D.S.P. Soares, and M.R.L.V. Leal. 2019. Technical and economic parameters of sugarcane straw recovery: Baling and integral harvesting. BioEnergy Research 12(4): 930–943. https://doi.org/10.1007/s12155-019-10039-0.

    Article  Google Scholar 

  • Osorio, J., and F. Chejne. 2019. Bio-oil production in fluidized bed reactor at pilot plant from sugarcane bagasse by catalytic fast pyrolysis. Waste Biomass Valorization 10: 187–195. https://doi.org/10.1007/s12649-017-0025-8.

    Article  CAS  Google Scholar 

  • Padmanabhan, P., P. Rakkiyappan, and K.C. Alexander. 1993. Enrichment of Pressmud by Microorganisms. Sugarcane Breeding Institute Extension, Publication No.39.

  • Pandey, A., C.R. Soccol, P. Nigam, and V.T. Soccol. 2000. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresources Technology 74(1): 69–80. https://doi.org/10.1016/S0960-8524(99)00142-X.

    Article  CAS  Google Scholar 

  • Park, Y.K., and R.J.H. Castro Gomez. 1982. Production of compost with bagasse and vinasses for cane crop in Brazil. Sugar Journal 45(5): 14–15.

    Google Scholar 

  • Partha, N., and V. Sivasubramanian. 2006. Recovery of chemicals from pressmud—A sugar industry waste. Indian Chemical Engineer Section A 48(3): 160–163.

    CAS  Google Scholar 

  • Patel, H. 2020. Environmental valorisation of bagasse fly ash: A review. RSC Advances 10: 31611. https://doi.org/10.1039/d0ra06422j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paturau, J.M. 1989. By-Products of the Cane Sugar Industry—An Introduction to Their Industrial Utilization (Sugar Series). 3rd ed. Amsterdam: Elsevier.

    Google Scholar 

  • Pendyal, B., M.M. Johns, W.E. Marshall, M. Ahmedna, and R.M. Rao. 1999. The effect of binders and agricultural by-products on physical and chemical properties of granular activated carbons. Bioresources Technology 68: 247–254.

    Article  CAS  Google Scholar 

  • PFI 2018. Pellet Fuels Institute Standard Specifications for Residential/Commercial Densified Fuel. Retrieved at: https://www.pelletheat.org/.

  • Phan, B.M.Q., L.T. Duong, V.D. Nguyen, T.B. Tran, M.H.H. Nguyen, L.H. Nguyen, D.A. Nguyen, and L.C. Luu. 2014. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis. Biomass and Bioenergy 62: 74–81. https://doi.org/10.1016/j.biombioe.2014.01.012.

    Article  CAS  Google Scholar 

  • Pierossi, M.A., and F.C. Bertolani. 2018. Sugarcane trash as feedstock for biorefineries. Advances in Sugarcane Biorefinery. https://doi.org/10.1016/B978-0-12-804534-3.00002-1.

    Article  Google Scholar 

  • Poole, R.T. 1989. Growth of Dieffenbachia and Gardenia in various potting ingredients. In Proceedings of the Florida State Horticultural Society, Conover, CA.

  • Prado, R.D.M., G. Caione, and C.N.S. Campos. 2013. Filter cake and vinasse as fertilizers contributing to conservation agriculture. Applied and Environmental Soil Science 2013: 1–8. https://doi.org/10.1155/2013/581984.

    Article  CAS  Google Scholar 

  • Purchase, B.S., S. Rosettenstein, and D.V. Bezuidenhoudt. 2014. Challenges and potential solutions for storage of large quantities of bagasse for power generation. International Sugar Journal. 116: 592–602.

    Google Scholar 

  • Qiang, L., L. Wen-Zhi, and Z. **-Feng. 2009. Overview of fuel properties of biomass fast pyrolysis oils. Energy Conversion and Management 50: 1376–1383.

    Article  CAS  Google Scholar 

  • Rainey, T.J., and G. Covey. 2016. Pulp and paper production from sugarcane bagasse (Book Chapter 10). In Sugarcane-Based Biofuels and Bioproducts, ed. Ian O’Hara and Sagadevan Mundree. Hoboken: Wiley Blackwell.

    Google Scholar 

  • Ranveer, A.C., D. Munde, and S. Sutar. 2015. Vermicomposting of pressmud from sugar industry. International Journal of Innovations in Engineering Research and Technology 2: 1–10.

    Google Scholar 

  • Rao, M. 1997. Industrial Utilization of Sugar Cane and Its Coproducts. New Delhi: ISPCK Publishers and Distributors.

    Google Scholar 

  • Rao, M., A.V. Parwate, and A.G. Bhole. 2002. Removal of Cr6 + and Ni2+ from aqueous solution using bagasse and fly ash. Waste Management 22(7): 821–830.

    Article  CAS  PubMed  Google Scholar 

  • Rasul, G., K.S. Khan, and R.G. Joergensen. 2013. Microbial use of sugarcane filter cake in an artificial saline substrate varying in anion composition and inoculant at different temperatures. Archives of Agronomy and Soil Science 60(3): 327–335. https://doi.org/10.1080/03650340.2013.797571.

    Article  CAS  Google Scholar 

  • Reddad, Z., C. Gerente, Y. Andres, M.C. Ralet, J.F. Thibault, and P.L. Cloirec. 2002. Ni(II) and Cu(II) binding properties of native and modified sugar beet pulp. Carbohydrate Polymers 49: 23–31.

    Article  CAS  Google Scholar 

  • Rengifo, J.C., G. Ramírez, and C.S. Bruzón. 1996. Importance of filter press cake as a substrate for vegetable seedling production. Acta agronómica, universidad nacional de Colombia 46(1/4): 37–43.

    Google Scholar 

  • Rocha, G.J.M., A.R. Gonçalves, S.C. Nakanishi, V.M. Nascimento, and V.F.N. Silva. 2015. Pilot scale steam explosion and diluted sulfuric acid pretreatments: Comparative study aiming the sugarcane bagasse saccharification. Industrial Crops and Products. 74: 810–816.

    Article  CAS  Google Scholar 

  • Rossetto, R., F.L.F. Dias, A.C. Vitti, H. Cantarella, and M.G.A. Landell. 2008. Manejo conservacionista e reciclagem de nutrientes em cana-de-açucar tendo em vista a colheita mecanica”. Informações Agronomicas 124: 8–13.

    Google Scholar 

  • Salama, Y., M. Chennaoui, M. El Amraoui, and M. Mountadar. 2016. A review of compost produced from biological wastes: Sugarcane industry wastes. International Journal of Food Science and Biotechnology 1: 24–37.

    Google Scholar 

  • Saleh-e-In, M.M., S. Yeasmin, B.K. Paul, M. Ahsan, M.Z. Rahman, and S.K. Roy. 2012. Chemical studies on press mud: A sugar industries waste in Bangladesh. Sugar Tech 14(2): 109–118. https://doi.org/10.1007/s12355-012-0139-z.

    Article  CAS  Google Scholar 

  • Sales, A., and S.A. Lima. 2010. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Management 30(6): 1114–1122. https://doi.org/10.1016/j.wasman.2010.01.026.

    Article  CAS  PubMed  Google Scholar 

  • Sampaio, I.L.M., T.F. Cardoso, N.R.D. Souza, M.D.B. Watanabe, D.J. Carvalho, A. Bonomi, and T.L. Junqueira. 2019. Electricity production from sugarcane straw recovered through bale system: Assessment of retrofit projects. BioEnergy Research 12(4): 865–877. https://doi.org/10.1007/s12155-019-10014-9.

    Article  Google Scholar 

  • Santos, F., S.C. Rabelo, M. De Matos, and P. Eichler. 2020. Sugarcane Biorefinery, Technology and Perspectives, vol. 289. Cambridge: Academic Press. https://doi.org/10.1016/C2017-0-00884-4.

    Book  Google Scholar 

  • Santos, D.H., M.A. Silva, C.S. Tiritan, and C.A.C. Crusciol. 2014. The effect of filter cakes enriched with soluble phosphorus used as a fertilizer on the sugarcane ratoons. Acta Scientiarum Agronomy 36: 365–372. https://doi.org/10.4025/actasciagron.v36i3.17791.

    Article  CAS  Google Scholar 

  • Sarangi, B.K., S.N. Mudliar, P.B.S. Kalve, T. Chakrabarti, and R.A. Pandey. 2008. Compost from sugarmill pressmud and distillery spent wash for sustainable agriculture. Dynamic Soil, Dynamic Plant 2(Special Issue 1). Global Science Books, 35–49.

  • Satyawali, Y., and M. Balakrishnan. 2008. Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: A Review. Journal of Environmental Management 86(3): 481–497. https://doi.org/10.1016/j.jenvman.2006.12.024.

    Article  CAS  PubMed  Google Scholar 

  • Scott, K., L. Taylor, B.P. Gill, and S.A. Edwards. 2006. Influence of different types of environmental enrichment on the behaviour of finishing pigs in two different housing systems. Applied Animal Behaviour Science 99(3–4), 222–229. https://doi.org/10.1016/j.applanim.2005.10.013.

    Article  Google Scholar 

  • Shah, B., C. Mistry, and A. Shah. 2013. Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: Isotherms, kinetics, and column study. Environmental Science and Pollution Research International 20: 2193–2209. https://doi.org/10.1007/s11356-012-1029-3.

    Article  CAS  PubMed  Google Scholar 

  • Shah, B., R. Tailor, and A. Shah. 2012. Zeolitic bagasse fly ash as a low-cost sorbent for the sequestration of p-nitrophenol: Equilibrium, kinetics, and column studies. Environmental Science and Pollution Research International 19(4): 1171–1186. https://doi.org/10.1007/s11356-011-0638-6.

    Article  CAS  PubMed  Google Scholar 

  • Silvia, S., T. Miura, K. Nobuhiro, K. Fujie, U. Hasanuddin, A. Niswati, and S. Haryani. 2014. Soil microbial biomass and diversity amended with bagasse mulch in tillage and no-tillage practices in the sugarcane plantation. Procedia Environmental Sciences 20: 410–417. https://doi.org/10.1016/j.proenv.2014.03.052.

    Article  Google Scholar 

  • Sindhu, R., E. Gnansounou, P. Binod, and A. Pandey. 2016. Bioconversion of sugarcane crop residue for value added products—An overview. Renewable Energy 98: 203–215. https://doi.org/10.1016/j.renene.2016.02.057.

    Article  CAS  Google Scholar 

  • Singh, R., and V. Singh. 2021. Integrated biorefinery for valorization of engineered bioenergy crops—a review. Industrial Biotechnology. 17(5): 271–282 https://doi.org/10.1089/ind.2021.0020.

    Article  Google Scholar 

  • Sohaib, Q., A. Muhammad, and Y. Mohammad. 2017. Fast pyrolysis of sugarcane bagasse: Effect of pyrolysis conditions on final product distribution and properties. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39(2): 184–190. https://doi.org/10.1080/15567036.2016.1212292.

    Article  CAS  Google Scholar 

  • Soltangheisi, A., P.J.A. Withers, P.S. Pavinato, M.R. Cherubin, R. Rossetto, J.B. Do Carmo, G.C. da Rocha, and L.A. Martinelli. 2019. Improving phosphorus sustainability of sugarcane production in Brazil. Global Change Biology Bioenergy 11(12): 1444–1455. https://doi.org/10.1111/gcbb.12650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speratti, A., J. Romanyà, J. Garcia-Pausas, and M. Johnson. 2018. Determining the stability of sugarcane filtercake biochar in soils with contrasting levels of organic matter. Agriculture. https://doi.org/10.3390/agriculture8060071.

    Article  Google Scholar 

  • Spokas, K.A., K.B. Cantrell, J.M. Novak, D.W. Archer, J.A. Ippolito, H.P. Collins, A.A. Boateng, I.M. Lima, M.C. Lamb, A.J. McAloon, R.D. Lentz, and K.A. Nichols. 2011. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality 41: 973–989.

    Article  CAS  Google Scholar 

  • Talha, Z., W. Ding, E. Mehryar, M. Hassan, and J. Bi. 2016. Alkaline Pretreatment of sugarcane bagasse and filter mud codigested to improve biomethane production. Biomed Res Int 2016: 8650597. https://doi.org/10.1155/2016/8650597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira, S.R., A.F. Pena, and A.G. Miguel. 2010. Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel. Waste Management 30(5): 804–807. https://doi.org/10.1016/j.wasman.2010.01.018.

    Article  CAS  PubMed  Google Scholar 

  • Tellechea, F.R., M.A. Martins, A.A. da Silva, E.F. da Gama-Rodrigues, and M.L. Martins. 2016. Use of sugarcane filter cake and nitrogen, phosphorus and potassium fertilization in the process of bioremediation of soil contaminated with diesel. Environmental Science and Pollution Research International 23(18): 18027–18033. https://doi.org/10.1007/s11356-016-6965-x.

    Article  CAS  PubMed  Google Scholar 

  • Tewari, P.K., V.S. Batra, and M. Balakrishnan. 2007. Water management initiatives in sugarcane molasses based distilleries in India. Resources, Conservation and Recycling 52(2): 351–367. https://doi.org/10.1016/j.resconrec.2007.05.003.

    Article  Google Scholar 

  • Thanapimmetha, A., P. Srinophakun, S. Amat, and M. Saisriyoot. 2017. Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process. Journal of Environmental Chemical Engineering 5(3): 2305–2312.

    Article  CAS  Google Scholar 

  • Treedet, W., and S. Ratchaphon. 2018. Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Processing Technology 179: 17–31. https://doi.org/10.1016/j.fuproc.2018.06.006.

    Article  CAS  Google Scholar 

  • Tsai, W.T., M.K. Lee, and Y.M. Chang. 2006. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical & Applied Pyrolysis 76(1–2): 230–237. https://doi.org/10.1016/j.jaap.2005.11.007.

    Article  CAS  Google Scholar 

  • Tyrer, M., C.R. Cheeseman, R. Greaves, P.A. Claisse, E. Ganjian, M. Kay, and J. Churchman-Davies. 2010. Potential for carbon dioxide reduction from cement industry through increased use of industrial pozzolans. Advances in Applied Ceramics 109(5): 275–279. https://doi.org/10.1179/174367509X12595778633282.

    Article  CAS  Google Scholar 

  • Urbaniec, K., and R. Grabarczyk. 2014. Hydrogen production from sugar beet molasses—A techno-economic study. Journal of Cleaner Production 65: 324–329. https://doi.org/10.1016/j.jclepro.2013.08.027.

    Article  CAS  Google Scholar 

  • U.S. Department of Energy. 2016. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Vol 1: Economic Availability of Feedstocks. M. H. Langholtz, B.J. Stokes, and L.M. Eaton (Leads), ORNL/TM-2016/160. Oak Ridge National Laboratory, TN. 448 p. https://doi.org/10.2172/1271651.

  • Van der Poel, P.W., H. Schiweck, and T. Schwartz. 1998. Sugar Technology. Beet and Cane Sugar Manufacture, 1005. Berlin: Verlag Dr.

    Book  Google Scholar 

  • Van Horn, H.H., B. Harris, J. Taylor, K.C. Bachman, and C.J. Wilcox. 1984. By-product feeds for lactating dairy cows: Effects of cottonseed hulls, sunflower hulls, corrugated paper, peanut hulls, sugarcane bagasse, and whole cottonseed with additives of fat, sodium bicarbonate, and Aspergillus oryzae product on milk production. Journal of Dairy Science 67: 2922–2938.

    Article  Google Scholar 

  • Van Raij, B., and H. Cantarella. 1997. Outras culturas industriais, in Recomendaçŏes de adubação e calagem para o estado de São Paulo. In Boletim Técnico, Vol. 100. 2nd ed., ed. B. van Raij, H. Cantarella, J.A. Quaggio, and A.M.C. Furlani, 233–239. Campinas: Instituto Agronomico.

    Google Scholar 

  • Varghese, L.M., R. Nagpal, A. Singh, O.P. Mishra, N.K. Bhardwaj, and R. Mahajan. 2020. Ultrafiltered biopul** strategy for the production of good quality pulp and paper from sugarcane bagasse. Environmental Science and Pollution Research 27: 44614–44622. https://doi.org/10.1007/s11356-020-11102-6.

    Article  CAS  PubMed  Google Scholar 

  • Vélez, M.J., J.L. Garzón, and C.S. Bruzón. 1996. The VSP model in Batavia lettuce Lactuca sativa var. capitata L. and response of two varieties to the application of organic compounds. Acta agronómica, universidad nacional de Colombia 46(1/4): 49–53.

    Google Scholar 

  • Webber, C.L., III., P.M. White Jr., M. Gu, D.J. Spaunhorst, I.M. Lima, and E.C. Petrie. 2018. Sugarcane and pine biochar as amendments for greenhouse growing media for the production of bean (Phaseolus vulgaris L.) seedlings. Journal of Agricultural Science 10(4): 58–68.

    Article  Google Scholar 

  • Webber, C.L., III., P.M. White Jr., D. Spaunhorst, and E. Petrie. 2017. Comparative performance of sugarcane bagasse and black polyethylene as mulch for squash (Cucurbita pepo L.) production. Journal of Agricultural Science 9(11): 1–9. https://doi.org/10.5539/jas.v9n11p1.

    Article  Google Scholar 

  • Whittaker, C., and I. Shield. 2017. Factors affecting wood, energy grass and straw pellet durability—A review. Renewable and Sustainable Energy Reviews 71: 1–11. https://doi.org/10.1016/j.rser.2016.12.119.

    Article  Google Scholar 

  • Wright, M.S., and I.M. Lima. 2019. Identification of microbial populations in blends of worm castings or sugarcane filter mud compost with biochar. Agronomy 11(8): 1671. https://doi.org/10.3390/agronomy11081671.

    Article  CAS  Google Scholar 

  • Wright, M.S., I.M. Lima, R. Powell, and R.L. Bigner. 2018. Effect of compacting and ensiling on stabilization of sweet sorghum bagasse. Sugar Tech 20(3): 357–363. https://doi.org/10.1007/s12355-017-0586-7.

    Article  Google Scholar 

  • Xu, Q., T. Ji, S.J. Gao, Z. Yang, and N. Wu. 2018. Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials (Basel). https://doi.org/10.3390/ma12010039.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakubu, A., E.B. Sabi, S. Onwona-Agyeman, H. Takada, and H. Watanabe. 2021. Impact of sugarcane bagasse mulching boards on soil erosion and carrot productivity. CATENA. https://doi.org/10.1016/j.catena.2021.105575.

    Article  Google Scholar 

  • Yu, P., L. Huang, Q. Li, I.M. Lima, P.M. White, and M. Gu. 2020. Effects of mixed hardwood and sugarcane biochar as bark-based substrate substitutes on container plants production and nutrient leaching. Agronomy 10(2): 156. https://doi.org/10.3390/agronomy10020156.

    Article  CAS  Google Scholar 

  • Zhang, Z., D. Li, and X. Zhang. 2019. Enzymatic decolorization of melanoidins from molasses wastewater by immobilized keratinase. Bioresources Technology 280: 165–172. https://doi.org/10.1016/j.biortech.2019.02.049.

    Article  CAS  Google Scholar 

  • Zhang, X., H. Wang, L. He, K. Lu, A. Sarmah, J. Li, N.S. Bolan, J. Pei, and H. Huang. 2013. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research 20: 8472–8483.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., R. Wu, and D. Liu. 2011. Production of pulp, ethanol and lignin from sugarcane bagasse by alkali-peracetic acid delignification. Biomass and Bioenergy 35(7): 2874–2882. https://doi.org/10.1016/j.biombioe.2011.03.033.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Charles Clayton for help with literature search. This review manuscript was supported, in part, by the U.S. Department of Agriculture, Agricultural Research Service. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Funding

This study was funded by the United States Department of Agriculture, Agricultural Research Service. No grants or other forms of outside funding were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel M. Lima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, I.M., Beacorn, J.A. Targeting a Sustainable Sugar Crops Processing Industry: A Review (Part II): Reuse and Conversion Technologies. Sugar Tech 24, 1010–1028 (2022). https://doi.org/10.1007/s12355-022-01180-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01180-w

Keywords

Navigation