Log in

Screening of Polymorphic SSR Molecular Markers Between Resistant and Susceptible Parents for Localization of Brown Rust Resistance Gene

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugarcane brown rust induced by Puccinia melanocephala is an important global disease. Exploring novel resistance genes and breeding varieties with durable resistance is the most economical and effective way of controlling brown rust. The establishment of complete and high-density molecular genetics maps is a key prerequisite for the discovery and location of sugarcane brown rust resistance genes. To obtain more polymorphic simple sequence repeat (SSR) markers for the construction of genetic linkage maps, six highly resistant varieties and six highly susceptible varieties were used as parents to screen the primers with clear bands, obvious polymorphism, and good repeatability. The highest numbers of polymorphic primers were obtained from the parental group of Liucheng 03-1137 × Dezhe 93-88 (52.38%). Ten pairs of primers including mSSCIR34 exhibited high polymorphism in the parental group of Liucheng 03-1137 × Dezhe 93-88. Here, we recommend ten SSR pairs of polymorphic primers including mSSCIR34 to use in the map** populations of Liucheng 03-1137 × Dezhe 93-88. The polymorphic primers could facilitate the construction of genetic maps and lay an appropriate foundation for the localization of brown rust resistance genes and development of molecular genetics linkage markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andru, S., Y.B. Pan, S. Thongthawee, D.M. Burner, and C.A. Kimbeng. 2011. Genetic analysis of the sugarcane (Saccharum, spp.) cultivar ‘LCP 85-384’. I. Linkage map** using AFLP, SSR, and TRAP markers. Theoretical and Applied Genetics 123: 77–93.

    Article  Google Scholar 

  • Asnaghi, C., D. Roques, S. Ruffel, C. Kaye, J.Y. Hoarau, H. Télismart, J.C. Girard, L.M. Roboin, A.M. Risterucci, L. Grive, and A. D’Hont. 2004. Targeted map** of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theoretical and Applied Genetics 108: 759–764.

    Article  CAS  Google Scholar 

  • Comstock, J.C. 1992. Effect of rust on sugarcane growth and biomass. Plant Disease 76(2): 175–177.

    Article  Google Scholar 

  • Comstock, J.C., J.M. Shine, and R.N. Raid. 1992a. Effect of early rust infection on subsequent sugarcane growth. Sugar Cane 4: 7–9.

    Google Scholar 

  • Comstock, J.C., K.K. Wu, and R.J. Schnell. 1992b. Heritability of resistance to sugar cane rust. Sugar Cane 6: 7–10.

    Google Scholar 

  • Cordeiro, G.M., G.O. Taylor, and R.J. Henry. 2000. Characterisation of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploid species. Plant Science 155: 161–168.

    Article  CAS  Google Scholar 

  • Daugrois, J.H., L. Grivet, D. Roques, J.Y. Hoarau, H. Lombard, J.C. Glaszmann, and A. D’Hont. 1996. A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar’R570’. Theoretical and Applied Genetics 92: 1059–1064.

    Article  CAS  Google Scholar 

  • Glynn, N.C., C. Laborde, R.W. Davidson, M.S. Irey, B. Glaz, A. D’Hont, and J.C. Comstock. 2012. Utilization of a major brown rust resistance gene in sugarcane breeding. Molecular Breeding 31: 323–331.

    Article  Google Scholar 

  • Grivet, L., and P. Arruda. 2001. Sugarcane genomics: Depicting the complex genome of an important tropical crop. Current Opinion in Plant Biology 5: 122–127.

    Article  Google Scholar 

  • Huang, Y.K., and W.F. Li. 2016. Colored atlas of control on diseases, insect pests and weeds of modern sugarcane, 118–121. Bei**g, China: China Agriculture Press.

    Google Scholar 

  • Li, W.F., H.L. Shan, R.Y. Zhang, H.C. Pu, X.Y. Wang, X.Y. Cang, J. Yin, Z.M. Luo, and Y.K. Huang. 2018a. Identification of field resistance and molecular detection of the brown rust resistance gene Bru1 in new elite sugarcane varieties in China. Crop Protection 103: 46–50.

    Article  Google Scholar 

  • Li, W.F., X.Y. Wang, Y.K. Huang, R.Y. Zhang, H.L. Shan, J. Yin, and Z.M. Luo. 2015. Identification of resistance to brown rust and molecular detection of Bru1gene in 31 wild core sugarcane germplasms. Acta Agronomica Sinica 41(5): 806–812.

    Article  CAS  Google Scholar 

  • Li, W.F., X.Y. Wang, Y.K. Huang, R.Y. Zhang, H.L. Shan, J. Yin, and Z.M. Luo. 2017. Molecular detection of Bru1 gene and identification of brown rust resistance in Chinese sugarcane germplasm. Sugar Tech 19(2): 183–190.

    Article  CAS  Google Scholar 

  • Li, Z., L.P. Xu, Y.C. Su, Q.B. Wu, W. Cheng, T.T. Sun, and S.W. Gao. 2018b. Analysis of brown rust resistance inheritance based on field phenotypes and detection of Bru1gene in sugarcane. Acta Agronomica Sinica 44(2): 306–312.

    Article  Google Scholar 

  • Liu, X.L., J. Mao, X. Lu, L. Ma, K.S. Aitken, P.A. Jackson, Q. Cai, and Y.H. Fan. 2010a. Construction of molecular genetic linkage map of sugarcane based on SSR and AFLP markers. Acta Agronomica Sinica 36(1): 177–183.

    Article  CAS  Google Scholar 

  • Liu, X.L., L. Ma, X.K. Chen, X.M. Ying, Q. Cai, J.Y. Liu, and C.W. Wu. 2010b. Establishment of DNA fingerprint ID in sugarcane cultivars in Yunnan, China. Acta Agronomica Sinica 36(2): 202–210.

    CAS  Google Scholar 

  • Pan, Y.B. 2006. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech 8(4): 246–256.

    Article  CAS  Google Scholar 

  • Pinto, L.R., K.M. Oliveira, E.C. Ulian, A.A. Garcia, and A.P. de Souza. 2004. Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47: 795–804.

    Article  CAS  Google Scholar 

  • Piperidis, N., P.A. Jackson, A. D’Hont, P. Besse, J.Y. Hoarau, B. Courtois, K.S. Aitken, and C.L. Mcintyre. 2008. Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Molecular Breeding 21: 233–247.

    Article  Google Scholar 

  • Raboin, L.M., K.M. Oliveira, L. Lecunff, H. Telismart, D. Roques, M. Butterfield, J.Y. Hoarau, and A. D’Hont. 2006. Genetic map** in sugarcane, a high polyploid, using bi-parental progeny: Identification of a gene controlling stalk color and a new rust resistance gene. Theoretical and Applied Genetics 112: 1382–1391.

    Article  CAS  Google Scholar 

  • Racedo, J., M.F. Perera, R. Bertani, C. Funes, V. Gonzalez, M.I. Cuenya, A. D’Hont, B. Welin, and A.P. Castagnaro. 2013. Bru1 gene and potential alternative sources of résistance to sugarcane brown rust disease. Euphytica 191: 429–436.

    Article  CAS  Google Scholar 

  • Rott, P., R.A. Bailey, J.C. Comstock, B.J. Croft, and A.S. Saumtally. 2000. A guide to sugarcane diseases, 85–89. Montpellier, France: CIRAD and ISSCT.

    Google Scholar 

  • Rott, P., J. Girard, and J.C. Comstook. 2013. Impact of pathogen genetics on breeding for resistance to sugarcane diseases. International Society of Sugar Cane Technologists Proceedings 28: 1–11.

    Google Scholar 

  • Santos, F.R.C., L.R. Pinto, L.A. Carlini-Garcia, R. Gazaffi, M.C. Mancini, B.S. Gonçalves, C.N.F. Medeiros, D. Perecin, A.A.F. Garcia, A.P. Souza, and M.I. Zucchi. 2015. Marker-trait association and epistasis for brown rust resistance in sugarcane. Euphytica 203: 533–547.

    Article  CAS  Google Scholar 

  • Waclawovsky, A.J., P.M. Sato, C.G. Lembke, P.H. Moore, and G.M. Souza. 2010. Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnology Journal 8(3): 263–276.

    Article  CAS  Google Scholar 

  • Wang, J.P., B. Roe, S. Macmi, Q.Y. Yu, J.E. Murray, H.B. Tang, C.X. Chen, F. Najar, G. Wiley, J. Bowers, M.A.V. Sluys, D.S. Rokhsar, M.E. Hudson, S.P. Moose, A.H. Paterson, and R. Ming. 2010. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics 11: 261.

    Article  Google Scholar 

  • Wei, J.J., Z.Y. Deng, W.H. Huang, X.H. Pan, B.H. Wang, and X.J. Liu. 2010. Biological characteristics of sugarcane rust in Beihai and its control methods. Journal of Anhui Agricultural Sciences 38 (27): 14997–14999.

    Google Scholar 

  • Yang, C.F. 2015. Construction of high-density genetic map and location of QTLs for smut in Saccharum Spontaneum. Nanning: University of Guangxi.

    Google Scholar 

  • Yang, X., M.S. Islam, S. Sood, S. Maya, E.A. Hanson, J. Comstock, and J.P. Wang. 2018. Identifying quantitative trait loci (QTLs) and develo** diagnostic markers linked to orange rust resistance in sugarcane (Saccharum spp.). Front Plant Science 9: 350.

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted with financial support from National Natural Science Foundation of China (31660419), Sugar Crop Research System (CARS-170303), Yunling industry and technology leading talent training program “Control of Sugarcane Harmful Organisms” (2018LJRC56) and an Earmarked Fund from Yunnan Province Agriculture Research System.

Author information

Authors and Affiliations

Authors

Contributions

WL, YH, and HS designed the experiments and markers. ZL, JY, and XC collected parental materials, while HS, XW, RZ, and LJ performed the experiments. HS, XW, and RZ analyzed the data. HS and WL wrote the article. WL and YH revised the article.

Corresponding author

Correspondence to Yingkun Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, H., Li, W., Huang, Y. et al. Screening of Polymorphic SSR Molecular Markers Between Resistant and Susceptible Parents for Localization of Brown Rust Resistance Gene. Sugar Tech 22, 1–7 (2020). https://doi.org/10.1007/s12355-019-00750-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-019-00750-9

Keywords

Navigation