Log in

The clinical utility of assessing myocardial blood flow using positron emission tomography

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. deKemp RA, Beanlands RS, Yoshinaga K. Will 3-dimensional PET-CT enable the routine quantification of myocardial blood flow? J Nucl Cardiol 2007;14:380-97.

    Article  PubMed  Google Scholar 

  2. Schelbert HR. Quantification of myocardial blood flow: What is the clinical role? Cardiol Clin 2009;27:277-89.

    Article  PubMed  Google Scholar 

  3. Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med 2009;50:1076-87.

    Article  PubMed  Google Scholar 

  4. Parkash R, deKemp RA, Ruddy TD, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440-9.

    Article  CAS  PubMed  Google Scholar 

  5. Neglia D, Michelassi C, Trivieri MG, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 2002;105:186-93.

    Article  PubMed  Google Scholar 

  6. Shikama N, Himi T, Yoshida K, et al. Prognostic utility of myocardial blood flow assessed by N-13 ammonia positron emission tomography in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 1999;84:434-9.

    Article  CAS  PubMed  Google Scholar 

  7. Olivotto I, Cecchi F, Camici PG, et al. Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol 2006;47:1043-8.

    Article  PubMed  Google Scholar 

  8. Cecchi F, Olivotto I, Gistri R, et al. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003;349:1027-35.

    Article  CAS  PubMed  Google Scholar 

  9. Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography: Added value of coronary flow reserve. J Am Coll Cardiol 2009;54:150-6.

    Article  PubMed  Google Scholar 

  10. Ziadi MC, deKemp RA, Beanlands RSB. Quantification of myocardial perfusion: What will it take to make it to prime time? Curr Cardiovas Imag Rep 2009;2:238-49.

    Article  Google Scholar 

  11. Chareonthaitawee P, Kaufmann PA, Camici PG, et al. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 2001;50:151-61.

    Article  CAS  PubMed  Google Scholar 

  12. Lortie M, Beanlands RSB, deKemp RA, Yoshinaga K, et al. Quantification of myocardial blood flow with 82-Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.

    Article  PubMed  Google Scholar 

  13. Uren NG, Camici P, Melin JA, et al. Effect of aging on myocardial perfusion reserve. J Nuci Med 1995;36:2032-6.

    CAS  Google Scholar 

  14. Czernin J, Muller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993;88:62-9.

    CAS  PubMed  Google Scholar 

  15. Dilsizian V, MD, Bacharach S, Beanlands RSB, Schelbert HR, et al. ASNC Imaging Guidelines for Nuclear Cardiology Procedures. PET myocardial perfusion and metabolism clinical imaging, July 2009. Available at: http://www.asnc.org.

  16. Geltman EM, Henes CG, Senneff MJ, et al. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol 1990;16:596-8.

    Article  Google Scholar 

  17. Nesterov SV, Han C, Lisinen I, Ukkonen H, Knuuti J, et al. Myocardial perfusion quantitation with 15O-water PET: High reproducibility of the new cardiac analysis software (Carimas™). Eur J Nucl Med Mol Imag 2009;36:1594-602.

    Article  Google Scholar 

  18. Ziadi MC, deKemp RA, Guo A, Williams W, Beanlands RSB, et al. Impaired myocardial flow reserve measured using rubidium-82 PET predicts outcomes in patients with suspected myocardial ischemia. Circulation 2009;120:S320 (abstract 325).

    Google Scholar 

  19. Dayanikli F, Grambow D, Muzik O, et al. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90:808-17.

    CAS  PubMed  Google Scholar 

  20. Kaufmann PA, Gnecchi-Ruscone T, di Camici PG, et al. Coronary heart disease in smokers: Vitamin C restores coronary microcirculatory function. Circulation 2000;102:1233-8.

    CAS  PubMed  Google Scholar 

  21. Brush JE Jr, Cannon RO III, Schenke WH, et al. Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med 1988;319:1302-7.

    PubMed  Google Scholar 

  22. Di Carli MF, Dorbala S, Curillova Z, Kwong R, et al. Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 2007;14:799-809.

    Article  PubMed  Google Scholar 

  23. Sampson UK, Di Carli MF, Dorbala S, Kwong R, et al. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 2007;49:1052-8.

    Article  CAS  PubMed  Google Scholar 

  24. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974;33:87-94.

    Article  CAS  PubMed  Google Scholar 

  25. Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res 1985;57:341-53.

    CAS  PubMed  Google Scholar 

  26. Uren NG, Melin JA, De Bruyne B, Camici PG. Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 1994;330:1782-8.

    Article  CAS  PubMed  Google Scholar 

  27. Beanlands RS, Hutchins GD, Schwaiger M, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography: Determination of extent of altered vascular reactivity. J Am Coll Cardiol 1995;26:1465-75.

    Article  CAS  PubMed  Google Scholar 

  28. Di Carli M, Czernin J, Gerbaudo VH, Schelbert HR, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944-51.

    CAS  PubMed  Google Scholar 

  29. Tonino PA, De Bruyne B, Fearon WF, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. The FAME Study Investigators. N Eng J Med 2009;360:213-24.

    Article  CAS  Google Scholar 

  30. Hajjiri MM, Leavitt MB, Gewirtz H, et al. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. J Am Coll Cardiol Imag 2009;2:751-8.

    Google Scholar 

  31. Curillova Z, Yaman BF, Dorbala S, Di Carli MF, et al. Quantitative relationship between coronary calcium content and coronary flow reserve as assessed by integrated PET/CT imaging. Eur J Nucl Med Mol Imag 2009;36:1603-10.

    Article  Google Scholar 

  32. Tio R, van Veldhuisen DJ, Zijlstra F, Slart RH, et al. Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med 2009;50:214-9.

    Article  PubMed  Google Scholar 

  33. Knaapen P, Germans T, Camici PG, et al. Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2008;294:H986-93.

    Article  CAS  PubMed  Google Scholar 

  34. Neglia D, Parodi O, Gallopin M, Pratali L, et al. Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure. A quantitative assessment by positron emission tomography. Circulation 1995;92:796-804.

    CAS  PubMed  Google Scholar 

  35. Canetti M, Akhter MW, Lerman A, et al. Evaluation of myocardial blood flow reserve in patients with chronic congestive heart failure due to idiopathic dilated cardiomyopathy. Am J Cardiol 2003;92:1246-9.

    Article  PubMed  Google Scholar 

  36. Goldstein RA, Kirkeeide RL, Demer LL, Mullani NA, Gould KL, et al. Changes in myocardial perfusion reserve after PTCA: Noninvasive assessment with positron tomography. J Nucl Med 1987;28:1262-7.

    CAS  PubMed  Google Scholar 

  37. Yoshinaga K, Chow BJ, deKemp RA, Beanlands R, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 2006;48:1029-39.

    Article  PubMed  Google Scholar 

  38. Lertsburapa K, Ahlberg AW, Bateman TM, Heller GV, et al. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol 2008;15:745-53.

    PubMed  Google Scholar 

  39. Dorbala S, Hachamovitch R, Kwong RY, Di Carli MF, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging 2009;2:846-54.

    Article  PubMed  Google Scholar 

  40. Lautamaki R, George RT, Kitagawa K, Voicu C, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: Validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging 2009;36:576-86.

    Article  PubMed  Google Scholar 

  41. El Fakhri G, Dorbala S, Di Carli MF, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: Comparison with 13N-ammonia PET. J Nucl Med 2009;50:1062-71.

    Article  CAS  PubMed  Google Scholar 

  42. Anagnostopoulos C, Dorbala S, Di Carli MF, et al. Quantitative relationship between coronary vasodilator reserve assessed by 82Rb PET imaging and coronary artery stenosis severity. Eur J Nucl Med Mol Imaging 2008;35:1593-601.

    Article  PubMed  Google Scholar 

  43. Ziadi MC, deKemp RA, Guo A, Beanlands RSB, et al. Reduced myocardial flow reserve quantified with rubidium-82 PET is an independent predictor of three vessel coronary artery disease. Circulation 2009;120:S320-1 (abstract 327).

    Google Scholar 

  44. Madar I, Ravert HT, Du Y, et al. Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med 2006;47:1359-66.

    CAS  PubMed  Google Scholar 

  45. Madar I, Ravert H, DiPaula A, et al. Assessment of severity of coronary artery stenosis in a canine model using the PET agent 18F-fluorobenzyl triphenyl phosphonium: Comparison with 99mTc tetrofosmin. J Nucl Med 2007;48:1021-30.

    Article  CAS  PubMed  Google Scholar 

  46. Yu M, Guaraldi M, Mistry M, et al. BMS.747158-02: A novel PET myocardial perfusion imaging agent. J Nucl Cardiol 2007;14:789-98.

    Article  CAS  PubMed  Google Scholar 

  47. Maddahi J, Schiepers C, Czernin J, Richard Sparks R, Phelps M, et al. First human study of BMS747158, a novel F-18 labeled tracer for myocardial perfusion imaging. J Nucl Med 2007;49:70P (abstract).

    Google Scholar 

  48. Knuuti J, Bengel FM. Positron emission tomography and molecular imaging. Heart 2008;94:360-7.

    Article  CAS  PubMed  Google Scholar 

  49. Camici PG, Crea F. Coronary microvascular dysfunction. N Eng J Med 2007;356:830-40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RSBB is a Career Investigator supported by the Heart and Stroke Foundation of Ontario (HSFO). MCZ is a Research Fellow supported by University of Ottawa International Fellowship Award and, the Molecular Function and Imaging Program (HSFO Grant # PRG6242). We would also like to thank Astellas Pharma US, Inc., Covidien, and GE Healthcare for corporate support to publish and distribute this article. Corporate supporters were not involved in the creation or review of information contained in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob S. B. Beanlands MD, FRCPC, FACC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziadi, M.C., Beanlands, R.S.B. The clinical utility of assessing myocardial blood flow using positron emission tomography. J. Nucl. Cardiol. 17, 571–581 (2010). https://doi.org/10.1007/s12350-010-9258-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-010-9258-7

Keywords

Navigation