Log in

Does an Aspirin a Day Take the MASLD Away?

  • Commentary
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Although aspirin is deeply rooted in the most ancient history of medicine, the mechanism of action of this drug was only identified a few decades ago. Aspirin has several indications ranging from its long-known analgesic and antipyretic properties to the more recently discovered antithrombotic, chemopreventive and anti-eclampsia actions. In addition, a recent line of research has identified aspirin as a drug with potential hepatologic indications. This article specifically focuses on the nonalcoholic fatty liver disease/nonalcoholic metabolic dysfunction fatty liver disease/metabolic dysfunction-associated steatotic liver disease (NAFLD/MAFLD/MASLD) field. To this end, the most recently published randomized controlled trial on aspirin for non-cirrhotic MASLD is summarized and discussed. Moreover, previous epidemiologic evidence supporting the notion that aspirin exerts antisteatotic and antifibrotic hepatic effects, which may result in the primary prevention of hepatocellular carcinoma, is also addressed. Next, the putative mechanisms involved are examined, with reference to the effects on adipose tissue and liver and sex differences in the action of aspirin. It is concluded that these novel findings on aspirin as a “hepatologic drug” deserve additional in-depth evaluation.

Plain Language Summary

Although aspirin is part of the history of medicine, its mechanism of action was only discovered a few decades ago. Aspirin can be used to treat pain, fever, inflammation and conditions where the blood tends to clot excessively (hypercoagulate) as well as for the prevention of certain types of cancer. Additionally, recent research has identified potential hepatologic indications and beneficial actions of aspirin among the so-called fatty liver disorders owing to conditions which disrupt the body’s regular metabolic functions and disorders (such as obesity and diabetes). This article discusses a recently published study while also addressing previous studies supporting the notion that aspirin might have pharmacologic action against fatty liver and its progression to scarring tissue (liver fibrosis and hepatic cirrhosis) and prevent the most common type of primary liver cancer. Aspirin not only acts on the blood cells that protect against hemorrhage (i.e., the platelets) but also targets other tissues such as adipose tissue and the liver. Importantly, biologic sex may affect the pharmacologic action of aspirin. Collectively, the discoveries summarized in our article justify additional investigations into aspirin as a “novel” drug in the hepatologic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Miedema MD, Huguelet J, Virani SS. Aspirin for the primary prevention of cardiovascular disease: in need of clarity. Curr Atheroscler Rep. 2016;18:4. https://doi.org/10.1007/s11883-015-0555-0. (PMID: 26753770).

    Article  CAS  PubMed  Google Scholar 

  2. Arif H, Aggarwal S. Salicylic acid (Aspirin). In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. (PMID: 30085574).

    Google Scholar 

  3. Montinari MR, Minelli S, De Caterina R. The first 3500 years of aspirin history from its roots: a concise summary. Vascul Pharmacol. 2019;113:1–8. https://doi.org/10.1016/j.vph.2018.10.008. (PMID: 30391545).

    Article  CAS  PubMed  Google Scholar 

  4. Ren Y, Zhao Y, Yang X, Shen C, Luo H. Application of low dose aspirin in pre-eclampsia. Front Med (Lausanne). 2023;10:1111371. https://doi.org/10.3389/fmed.2023.1111371. (PMID: 36968826; PMCID: PMC10030847).

    Article  PubMed  Google Scholar 

  5. Shah D, Di Re A, Toh JWT. Aspirin chemoprevention in colorectal cancer: network meta-analysis of low, moderate, and high doses. Br J Surg. 2023;110:1691–702. https://doi.org/10.1093/bjs/znad231. (PMID: 37499126).

    Article  PubMed  Google Scholar 

  6. Eskridge W, Cryer DR, Schattenberg JM, Gastaldelli A, Malhi H, Allen AM, Noureddin M, Sanyal AJ. Metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis: the patient and physician perspective. J Clin Med. 2023;12:6216. https://doi.org/10.3390/jcm12196216. (PMID: 37834859; PMCID: PMC1057347).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lonardo A, Leoni S, Alswat KA, Fouad Y. History of nonalcoholic fatty liver disease. Int J Mol Sci. 2020;21:5888. https://doi.org/10.3390/ijms21165888. (PMID: 32824337; PMCID: PMC7460697).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fouad Y, Barakat S, Hashim A, Ghazinyan H. Towards unifying fatty liver nomenclature: a voice from the Middle East and North Africa. Nat Rev Gastroenterol Hepatol. 2024. https://doi.org/10.1038/s41575-024-00918-z. (PMID: 38499807).

    Article  PubMed  Google Scholar 

  9. Méndez-Sánchez N, Bugianesi E, Gish RG, Lammert F, Tilg H, Nguyen MH, Sarin SK, Fabrellas N, Zelber-Sagi S, Fan JG, Shiha G, Targher G, Zheng MH, Chan WK, Vinker S, Kawaguchi T, Castera L, Yilmaz Y, Korenjak M, Spearman CW, Ungan M, Palmer M, El-Shabrawi M, Gruss HJ, Dufour JF, Dhawan A, Wedemeyer H, George J, Valenti L, Fouad Y, Romero-Gomez M, Eslam M, Global multi-stakeholder consensus on the redefinition of fatty liver disease. Global multi-stakeholder endorsement of the MAFLD definition. Lancet Gastroenterol Hepatol. 2022;7:388–90. https://doi.org/10.1016/S2468-1253(22)00062-0. (PMID: 35248211).

    Article  PubMed  Google Scholar 

  10. George J. Adding to the confusion in more than just the name. Clin Mol Hepatol. 2023;29:973–6. https://doi.org/10.3350/cmh.2023.0367. (PMID: 37718551; PMCID: PMC10577352).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Byrne CD, Targher G. MASLD, MAFLD, or NAFLD criteria: have we re-created the confusion and acrimony surrounding metabolic syndrome? Metab Target Organ Damage. 2024;4:10. https://doi.org/10.20517/mtod.2024.06.

    Article  CAS  Google Scholar 

  12. Fouad Y, Ghazinyan H, Alboraie M, Al Khatry M, Desalegn H, Al-Ali F, El-Shabrawi MHF, Ocama P, Derbala M, Barakat S, Awuku YA, Ndububa DA, Sabbah M, Hamoudi W, Ng’wanasayi M, Elwakil R, Ally R, Al-Busafi SA, Hashim A, Esmat G, Shiha G. Joint position statement from the Middle East and North Africa and sub-Saharan Africa on continuing to endorse the MAFLD definition. J Hepatol. 2024. https://doi.org/10.1016/j.jhep.2024.01.033. (PMID: 38342440).

    Article  PubMed  Google Scholar 

  13. Tilg H, Adolph TE, Moschen AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade. Hepatology. 2021;73:833–42. https://doi.org/10.1002/hep.31518. (PMID: 32780879; PMCID: PMC7898624).

    Article  PubMed  Google Scholar 

  14. Ballestri S, Mantovani A, Di Girolamo M, Baldelli E, Capitelli M, Lonardo A. Liver fibrosis in nonalcoholic fatty liver disease patients: noninvasive evaluation and correlation with cardiovascular disease and mortality. Metab Target Organ Damage. 2023;3:1. https://doi.org/10.20517/mtod.2022.23.

    Article  CAS  Google Scholar 

  15. Lugari S, Baldelli E, Lonardo A. Metabolic primary liver cancer in adults: risk factors and pathogenic mechanisms. Metab Target Organ Damage. 2023;3:5. https://doi.org/10.20517/mtod.2022.38.

    Article  CAS  Google Scholar 

  16. Ratziu V, Friedman SL. Why do so many nonalcoholic steatohepatitis trials fail? Gastroenterology. 2023;165(1):5–10. https://doi.org/10.1053/j.gastro.2020.05.046. (PMID: 32439497).

    Article  PubMed  Google Scholar 

  17. Lonardo A, Ballestri S, Mantovani A, Targher G, Bril F. Endpoints in NASH clinical trials: are we blind in one eye? Metabolites. 2024;14(1):40. https://doi.org/10.3390/metabo14010040.PMID:38248843;PMCID:PMC10820221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harrison SA, Bedossa P, Guy CD, Schattenberg JM, Loomba R, Taub R, Labriola D, Moussa SE, Neff GW, Rinella ME, Anstee QM, Abdelmalek MF, Younossi Z, Baum SJ, Francque S, Charlton MR, Newsome PN, Lanthier N, Schiefke I, Mangia A, Pericàs JM, Patil R, Sanyal AJ, Noureddin M, Bansal MB, Alkhouri N, Castera L, Rudraraju M, Ratziu V, MAESTRO-NASH Investigators. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N Engl J Med. 2024;390:497–509. https://doi.org/10.1056/NEJMoa2309000. (PMID: 38324483).

    Article  PubMed  Google Scholar 

  19. Lonardo A. Resmetirom: finally, the light at the end of the NASH tunnel? Livers. 2024;4:138–41. https://doi.org/10.3390/livers4010010.

    Article  Google Scholar 

  20. Simon TG, Wilechansky RM, Stoyanova S, Grossman A, Dichtel LE, Lauer GM, Miller KK, Hoshida Y, Corey KE, Loomba R, Chung RT, Chan AT. Aspirin for metabolic dysfunction-associated steatotic liver disease without cirrhosis: a randomized clinical trial. JAMA. 2024;331:920–9. https://doi.org/10.1001/jama.2024.1215. (PMID: 38502074; PMCID: PMC10951738).

    Article  CAS  PubMed  Google Scholar 

  21. Malehmir M, Pfister D, Gallage S, et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med. 2019;25:641–55. https://doi.org/10.1038/s41591-019-0379-5.

    Article  CAS  PubMed  Google Scholar 

  22. Scherlinger M, Richez C, Tsokos GC, Boilard E, Blanco P. The role of platelets in immune-mediated inflammatory diseases. Nat Rev Immunol. 2023;23:495–510. https://doi.org/10.1038/s41577-023-00834-4. (PMID: 36707719; PMCID: PMC9882748).

    Article  CAS  PubMed  Google Scholar 

  23. Shen H, Shahzad G, Jawairia M, Bostick RM, Mustacchia P. Association between aspirin use and the prevalence of nonalcoholic fatty liver disease: a cross-sectional study from the third National health and nutrition examination survey. Aliment Pharmacol Ther. 2014;40:1066–73. https://doi.org/10.1111/apt.12944. (PMID: 25176122).

    Article  CAS  PubMed  Google Scholar 

  24. Jiang ZG, Feldbrügge L, Tapper EB, Popov Y, Ghaziani T, Afdhal N, Robson SC, Mukamal KJ. Aspirin use is associated with lower indices of liver fibrosis among adults in the United States. Aliment Pharmacol Ther. 2016;43:734–43. https://doi.org/10.1111/apt.13515. (PMID: 26749582).

    Article  CAS  PubMed  Google Scholar 

  25. Simon TG, Henson J, Osganian S, Masia R, Chan AT, Chung RT, Corey KE. Daily aspirin use associated with reduced risk for fibrosis progression in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2019;17:2776-2784.e4. https://doi.org/10.1016/j.cgh.2019.04.061.PMID:31077838;PMCID:PMC6842070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tiwari-Heckler S, Jiang ZG, Popov Y, Mukamal KJ. Daily high-dose aspirin does not lower APRI in the aspirin-myocardial infarction study. J Biomed Res. 2019;34:139–42. https://doi.org/10.7555/JBR.33.20190041. (PMID: 32305968; PMCID: PMC7183302).

    Article  CAS  PubMed  Google Scholar 

  27. Memel ZN, Arvind A, Moninuola O, et al. Aspirin use is associated with a reduced incidence of hepatocellular carcinoma. Hepatol Commun. 2020;5:133–43. https://doi.org/10.1002/hep4.1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thongtan T, Deb A, Vutthikraivit W, Laoveeravat P, Mingbunjerdsuk T, Islam S, Islam E. Antiplatelet therapy associated with lower prevalence of advanced liver fibrosis in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Indian J Gastroenterol. 2022;41:119–26. https://doi.org/10.1007/s12664-021-01230-3. (PMID: 35318571).

    Article  PubMed  Google Scholar 

  29. Vell MS, Krishnan A, Wangensteen K, Serper M, Seeling KS, Hehl L, Rendel MD, Zandvakili I, Vujkovic M, Scorletti E, Creasy KT, Trautwein C, Rader DJ, Alqahtani S, Schneider KM, Schneider CV. Aspirin is associated with a reduced incidence of liver disease in men. Hepatol Commun. 2023;7: e0268. https://doi.org/10.1097/HC9.0000000000000268. (PMID: 37708453; PMCID: PMC10503677).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee TY, Hsu YC, Ho HJ, Lin JT, Chen YJ, Wu CY. Daily aspirin associated with a reduced risk of hepatocellular carcinoma in patients with non-alcoholic fatty liver disease: a population-based cohort study. EClinicalMedicine. 2023;61: 102065. https://doi.org/10.1016/j.eclinm.2023.102065. (PMID: 37434747; PMCID: PMC10331813).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tan JL, Sidhu-Brar S, Woodman R, Chinnaratha MA. Regular aspirin use is associated with a reduced risk of hepatocellular carcinoma (HCC) in chronic liver disease: a systematic review and meta-analysis. J Gastrointest Cancer. 2023;54:325–31. https://doi.org/10.1007/s12029-022-00842-y. (PMID: 35717551).

    Article  CAS  PubMed  Google Scholar 

  32. Zeng RW, Yong JN, Tan DJH, Fu CE, Lim WH, **ao J, Chan KE, Tan C, Goh XL, Chee D, Syn N, Tan EX, Muthiah MD, Ng CH, Tamaki N, Lee SW, Kim BK, Nguyen MH, Loomba R, Huang DQ. Meta-analysis: Chemoprevention of hepatocellular carcinoma with statins, aspirin and metformin. Aliment Pharmacol Ther. 2023;57:600–9. https://doi.org/10.1111/apt.17371. (PMID: 36625733; PMCID: PMC10792521).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yin MJ, Yamamoto Y, Gaynor RB. R B Gaynor The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998;396:77–80. https://doi.org/10.1038/23948.

    Article  CAS  PubMed  Google Scholar 

  34. McLaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest. 2017;127(1):5–13. https://doi.org/10.1172/JCI88876.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, Clement N, Moes S, Colombi M, Meier JA, Swierczynska MM, Jenö P, Beglinger C, Peterli R, Hall MN. Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 2018;128:1538–50. https://doi.org/10.1172/JCI96139. (PMID: 29528335; PMCID: PMC5873875).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Micu ES, Amzolini AM, Barău Abu-Alhija A, Forţofoiu MC, Vladu IM, Clenciu D, Mitrea A, Mogoantă SŞ, Crişan AE, Predescu OI, Radu M. Systemic and adipose tissue inflammation in NASH: correlations with histopathological aspects. Rom J Morphol Embryol. 2021;62:509–15. https://doi.org/10.47162/RJME.62.2.17. (PMID: 35024739; PMCID: PMC8848222).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang X, Gao Y, Liu Z, Li W, Kang Y, Li X, Xu Z, Peng C, Qi Y. Salicylate sodium suppresses monocyte chemoattractant protein-1 production by directly inhibiting phosphodiesterase 3B in TNF-α-stimulated adipocytes. Int J Mol Sci. 2022;24:320. https://doi.org/10.3390/ijms24010320. (PMID: 36613764; PMCID: PMC9820166).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu R, Dai Y, Zheng X, Yan Y, He Z, Zhang H, Li H, Chen W. Thromboxane A2-TP axis promotes adipose tissue macrophages M1 polarization leading to insulin resistance in obesity. Biochem Pharmacol. 2023;210: 115465. https://doi.org/10.1016/j.bcp.2023.115465.

    Article  CAS  PubMed  Google Scholar 

  39. Sardi C, Martini E, Mello T, Camelliti S, Sfondrini L, Marcucci F, Kallikourdis M, Sommariva M, Rumio C. Effect of acetylsalicylic acid on inflamed adipose tissue: insulin resistance and hepatic steatosis in a mouse model of diet-induced obesity. Life Sci. 2021;264: 118618. https://doi.org/10.1016/j.lfs.2020.118618. (PMID: 33141040).

    Article  CAS  PubMed  Google Scholar 

  40. Sangwung P, Petersen KF, Shulman GI, Knowles JW. Mitochondrial dysfunction, insulin resistance, and potential genetic implications. Endocrinology. 2020;161:bqaa017. https://doi.org/10.1210/endocr/bqaa017. (PMID: 32060542; PMCID: PMC7341556).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan Y, Yang X, Zhao T, Zou Y, Li R, Xu Y. Salicylates promote mitochondrial biogenesis by regulating the expression of PGC-1α in murine 3T3-L1 pre-adipocytes. Biochem Biophys Res Commun. 2017;491:436–41. https://doi.org/10.1016/j.bbrc.2017.07.074. (PMID: 28712868).

    Article  CAS  PubMed  Google Scholar 

  42. Sun Y, Liu B, **e J, Jiang X, **ao B, Hu X, **ang J. Aspirin attenuates liver fibrosis by suppressing TGF-β1/Smad signaling. Mol Med Rep. 2022;25:181. https://doi.org/10.3892/mmr.2022.12697. (PMID: 35322863; PMCID: PMC897227).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu Z, Wu Y, Zhong W, Zhong Q, Rao S, Yu D, Luo X, Qiu F, Song Z, ** D, Ai M, Lan Y, Zhang G, Song S, **e B, Sun S. The hepatoprotective effect of aspirin on carbon tetrachloride-induced hepatic fibrosis via inhibition of TGFβ-1 pathway and pro-inflammatory cytokines IL-1β and COX-2 in rats. Exp Ther Med. 2023;25:232. https://doi.org/10.3892/etm.2023.11931. (PMID: 37114173; PMCID: PMC10127207).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dai Y, Xu R, Chen J, Fang J, Zhang H, Li H, Chen W. Thromboxane A2/thromboxane A2 receptor axis facilitates hepatic insulin resistance and steatosis through endoplasmic reticulum stress in non-alcoholic fatty liver disease. Br J Pharmacol. 2024;181:967–86. https://doi.org/10.1111/bph.16238. (PMID: 37940413).

    Article  CAS  PubMed  Google Scholar 

  45. Lefere S, Devisscher L, Geerts A. Angiogenesis in the progression of non-alcoholic fatty liver disease. Acta Gastroenterol Belg. 2020;83:301–7 (PMID: 32603050).

    CAS  PubMed  Google Scholar 

  46. Carr RM. VCAM-1: closing the gap between lipotoxicity and endothelial dysfunction in nonalcoholic steatohepatitis. J Clin Invest. 2021;131: e147556. https://doi.org/10.1172/JCI147556. (PMID: 33720049; PMCID: PMC7954588).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dzeshka MS, Shantsila A, Lip GY. Effects of aspirin on endothelial function and hypertension. Curr Hypertens Rep. 2016;18:83. https://doi.org/10.1007/s11906-016-0688-8. (PMID: 27787837; PMCID: PMC5083775).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen Z, Chen M, Zeng P, Yang X, Li Q. Association of aspirin with all-cause and cardiocerebrovascular mortality in patients with metabolic associated fatty liver disease. Scand J Gastroenterol. 2023;58:908–14. https://doi.org/10.1080/00365521.2023.2179864. (PMID: 36799202).

    Article  CAS  PubMed  Google Scholar 

  49. Schonmann Y, Yeshua H, Bentov I, Zelber-Sagi S. Liver fibrosis marker is an independent predictor of cardiovascular morbidity and mortality in the general population. Dig Liver Dis. 2021;53:79–85. https://doi.org/10.1016/j.dld.2020.10.014. (PMID: 33144054).

    Article  CAS  PubMed  Google Scholar 

  50. Harris WH, Salzman EW, Athanasoulis CA, Waltman AC, Desanctis RW. Aspirin prophylaxis of venous thromboembolism after total hip replacement. NEJM. 1977;297:1246–9.

    Article  CAS  PubMed  Google Scholar 

  51. The Canadian Cooperative Study Group. A randomized trial of aspirin and sulinpyrazone in threatened stroke. NEJM. 1978;2p9:53–9.

    Article  Google Scholar 

  52. Lip GY, Eikelboom J, Yusuf S, Shestakovska O, Hart RG, Connolly S, AVERROES Investigators. Modification of outcomes with aspirin or apixaban in relation to female and male sex in patients with atrial fibrillation: a secondary analysis of the AVERROES study. Stroke. 2014;45:2127–30. https://doi.org/10.1161/STROKEAHA.114.005746. (PMID: 24916911).

    Article  CAS  PubMed  Google Scholar 

  53. Coppe D, Wessinger SJ, Ransil BJ, Harris W, Salzman E. Sex differences in the platelet response to aspirin. Thromb Res. 1981;23:1–21. https://doi.org/10.1016/0049-3848(81)90233-4. (PMID: 7302916).

    Article  CAS  PubMed  Google Scholar 

  54. Chen Y, Jiang L, Smith M, Pan H, Collins R, Peto R, Chen Z, COMMIT/CCS-2 collaborative group. Sex differences in hospital mortality following acute myocardial infarction in China: findings from a study of 45 852 patients in the COMMIT/CCS-2 study. Heart Asia. 2011;3:104–10. https://doi.org/10.1136/heartasia-2011-010003. (PMID: 27326005; PMCID: PMC4898572).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kelton JG, Hirsch J, Carter J, Bucchanan MR. Sex differences in the antithrombotic effects of aspirin. Blood. 1978;52:1073–5.

    Article  CAS  PubMed  Google Scholar 

  56. Suarez Ferreira SP, Hall RP, Morrow K, Patel S, Lee I, Hagos F, Zacharias N, Machlus K, Dua A. The impact of sex on platelet responses to aspirin in patients with peripheral artery disease. Am J Hematol. 2024. https://doi.org/10.1002/ajh.27258. (PMID: 38400527).

    Article  PubMed  Google Scholar 

  57. Aarons L, Hopkins K, Rowland M, Brossel S, Thiercelin JF. Route of administration and sex differences in the pharmacokinetics of aspirin, administered as its lysine salt. Pharm Res. 1989;6:660–6. https://doi.org/10.1023/a:1015978104017. (PMID: 2510140).

    Article  CAS  PubMed  Google Scholar 

  58. Friede KA, Infeld MM, Tan RS, Knickerbocker HJ, Myers RA, Dubois LG, Thompson JW, Kaddurah-Daouk R, Ginsburg GS, Ortel TL, Voora D. Influence of sex on platelet reactivity in response to aspirin. J Am Heart Assoc. 2020;9: e014726. https://doi.org/10.1161/JAHA.119.014726. (PMID: 32654613; PMCID: PMC7660714).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pace S, Sautebin L, Werz O. Sex-biased eicosanoid biology: Impact for sex differences in inflammation and consequences for pharmacotherapy. Biochem Pharmacol. 2017;1(145):1–11. https://doi.org/10.1016/j.bcp.2017.06.128. (PMID: 28647490).

    Article  CAS  Google Scholar 

  60. Dorsch MP, Lee JS, Lynch DR, Dunn SP, Rodgers JE, Schwartz T, Colby E, Montague D, Smyth SS. Aspirin resistance in patients with stable coronary artery disease with and without a history of myocardial infarction. Ann Pharmacother. 2007;41:737–41. https://doi.org/10.1345/aph.1H621. (PMID: 17456544).

    Article  CAS  PubMed  Google Scholar 

  61. Rydberg DM, Holm L, Mejyr S, Loikas D, Schenck-Gustafsson K, von Euler M, Wettermark B, Malmström RE. Sex differences in spontaneous reports on adverse bleeding events of antithrombotic treatment. Eur J Clin Pharmacol. 2014;70:117–26. https://doi.org/10.1007/s00228-013-1591-8. (PMID: 24096684).

    Article  CAS  PubMed  Google Scholar 

  62. Lonardo A. The heterogeneity of metabolic syndrome presentation and challenges this causes in its pharmacological management: a narrative review focusing on principal risk modifiers. Expert Rev Clin Pharmacol. 2023;16:891–911. https://doi.org/10.1080/17512433.2023.2259306. (PMID: 37722710).

    Article  CAS  PubMed  Google Scholar 

  63. Francque SM. Towards precision medicine in non-alcoholic fatty liver disease. Rev Endocr Metab Disord. 2023;24:885–99. https://doi.org/10.1007/s11154-023-09820-6. (PMID: 37477772).

    Article  PubMed  Google Scholar 

  64. Valenzuela-Vallejo L, Sanoudou D, Mantzoros CS. Precision medicine in fatty liver disease/non-alcoholic fatty liver disease. J Pers Med. 2023;13:830. https://doi.org/10.3390/jpm13050830. (PMID: 37241000; PMCID: PMC10224312).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Iruzubieta P, Bataller R, Arias-Loste MT, Arrese M, Calleja JL, Castro-Narro G, Cusi K, Dillon JF, Martínez-Chantar ML, Mateo M, Pérez A, Rinella ME, Romero-Gómez M, Schattenberg JM, Zelber-Sagi S, Crespo J, Lazarus JV. Research priorities for precision medicine in NAFLD. Clin Liver Dis. 2023;27:535–51. https://doi.org/10.1016/j.cld.2023.01.016. (PMID: 37024222).

    Article  PubMed  Google Scholar 

  66. Sharpton SR, Schnabl B, Knight R, Loomba R. Current concepts, opportunities, and challenges of gut microbiome-based personalized medicine in nonalcoholic fatty liver disease. Cell Metab. 2021;33:21–32. https://doi.org/10.1016/j.cmet.2020.11.010. (PMID: 33296678; PMCID: PMC8414992).

    Article  CAS  PubMed  Google Scholar 

  67. Camilli M, Iannaccone G, La Vecchia G, Cappannoli L, Scacciavillani R, Minotti G, Massetti M, Crea F, Aspromonte N. Platelets: the point of interconnection among cancer, inflammation, and cardiovascular diseases. Expert Rev Hematol. 2021;14:537–46. https://doi.org/10.1080/17474086.2021.1943353. (PMID: 34126832).

    Article  CAS  PubMed  Google Scholar 

  68. Wang J, Lonardo A. Commentary: of women, liver, and heart. Metab Target Organ Damage. 2023;3:14. https://doi.org/10.20517/mtod.2023.23.

    Article  CAS  Google Scholar 

  69. Lonardo A, Suzuki A. Sexual dimorphism of NAFLD in adults: focus on clinical aspects and implications for practice and translational research. J Clin Med. 2020;9:1278. https://doi.org/10.3390/jcm9051278. (PMID: 32354182; PMCID: PMC7288212).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Khan H, Gallant RC, Zamzam A, Jain S, Afxentiou S, Syed M, Kroezen Z, Shanmuganathan M, Britz-McKibbin P, Rand ML, Ni H, Al-Omran M, Qadura M. Personalization of aspirin therapy ex vivo in patients with atherosclerosis using light transmission aggregometry. Diagnostics (Basel). 2020;10:871. https://doi.org/10.3390/diagnostics10110871. (PMID: 33114560; PMCID: PMC7693608).

    Article  CAS  PubMed  Google Scholar 

  71. Forgerini M, Lucchetta RC, Urbano G, de Nadai TR, de Carvalho MP. Genetic polymorphisms associated with upper gastrointestinal bleeding: a systematic review. Pharmacogenom J. 2021;21:20–36. https://doi.org/10.1038/s41397-020-00185-6. (PMID: 32948830).

    Article  CAS  Google Scholar 

Download references

Funding

No funding or sponsorship was received for this study or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: Amadeo Lonardo; data collection: Amadeo Lonardo; analysis and interpretation of results: Amadeo Lonardo and Ming-Hua Zheng; draft manuscript preparation: Amadeo Lonardo and Ming-Hua Zheng. Both authors reviewed the final draft and approved the final version of the manuscript.

Corresponding author

Correspondence to Amedeo Lonardo.

Ethics declarations

Conflict of Interest

Amedeo Lonardo is an Editorial Board member of Advances in Therapy. Amedeo Lonardo was not involved in the selection of peer reviewers for the manuscript or any of the subsequent editorial decisions. Ming-Hua Zheng has received honoraria for lectures from AstraZeneca, Hisky Medical Technologies and Novo Nordisk and consulting fees from Boehringer Ingelheim.

Ethical Approval

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lonardo, A., Zheng, MH. Does an Aspirin a Day Take the MASLD Away?. Adv Ther 41, 2559–2575 (2024). https://doi.org/10.1007/s12325-024-02885-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-024-02885-y

Keywords

Navigation