Log in

Spatiotemporal Gait Analysis of Patients with Spinocerebellar Ataxia Types 3 and 10 Using Inertial Measurement Units: A Comparative Study

  • Research
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Given the high morbidity related to the progression of gait deficits in spinocerebellar ataxias (SCA), there is a growing interest in identifying biomarkers that can guide early diagnosis and rehabilitation. Spatiotemporal parameter (STP) gait analysis using inertial measurement units (IMUs) has been increasingly studied in this context. This study evaluated STP profiles in SCA types 3 and 10, compared them to controls, and correlated them with clinical scales. IMU portable sensors were used to measure STPs under four gait conditions: self-selected pace (SSP), fast pace (FP), fast pace checking-boxes (FPCB), and fast pace with serial seven subtractions (FPS7). Compared to healthy subjects, both SCA groups had higher values for step time, variability, and swing time, with lower values for gait speed, cadence, and step length. We also found a reduction in speed gain capacity in both SCA groups compared to controls and an increase in speed dual-task cost in the SCA10 group. However, there were no significant differences between the SCA groups. Swing time, mean speed, and step length were correlated with disease severity, risk of falling and functionality in both clinical groups. In the SCA3 group, fear of falling was correlated with cadence. In the SCA10 group, results of the Montreal cognitive assessment test were correlated with step time, mean speed, and step length. These results show that individuals with SCA3 and SCA10 present a highly variable, short-stepped, slow gait pattern compared to healthy subjects, and their gait quality worsened with a fast pace and dual-task involvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schöggl J, Siegert S, Boltshauser E, Freilinger M, Schmidt WM. A De Novo Missense NPTX1 Variant in an Individual with Infantile-Onset Cerebellar Ataxia. Mov Disord. 2022;37:1774–6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Coutelier M, Jacoupy M, Janer A, Renaud F, Auger N, Saripella GV, et al. NPTX1 mutations trigger endoplasmic reticulum stress and cause autosomal dominant cerebellar ataxia. Brain. 2022;145:1519–34.

    Article  PubMed  Google Scholar 

  3. De Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O, et al. Spinocerebellar ataxias in Brazil - Frequencies and modulating effects of related genes. Cerebellum. 2014;13:17–28.

    Article  CAS  PubMed  Google Scholar 

  4. Takiyama Y, Nishizawa M, Tanaka H, Kawashima S, Sakamoto H, Karube Y, et al. The gene for Machado–Joseph disease maps to human chromosome 14q. Nat Genet. 1993;4:300–4.

    Article  CAS  PubMed  Google Scholar 

  5. Stevanin G, Cancel G, Durr A, Chneiweiss H, Dubourg O, Weissenbach J, et al. The gene for spinal cerebellar ataxia 3 (SCA3) is located in a region of ~3 cM on chromosome 14q24.3-q32.2. Am J Hum Genet. 1995;56:193–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Moro A, Munhoz RP, Arruda WO, Raskin S, Moscovich M, Teive HAG. Spinocerebellar ataxia type 3: Subphenotypes in a cohort of brazilian patients. Arq Neuropsiquiatr. 2014;72:659–62.

    Article  PubMed  Google Scholar 

  7. Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: A 2-year follow-up study. Neurology. 2011;77:1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsuura T, Fang P, Pearson CE, Jayakar P, Ashizawa T, Roa BB, et al. Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: Repeat purity as a disease modifier? Am J Hum Genet. 2006;78:125–9.

    Article  CAS  PubMed  Google Scholar 

  9. Raskin S, Ashizawa T, Teive HAG, Arruda WO, Fang P, Gao R, et al. Reduced penetrance in a Brazilian family with spinocerebellar ataxia type 10. Arch Neurol. 2007;64:591–4.

    Article  PubMed  Google Scholar 

  10. Teive HAG, Ashizawa T. Spinocerebellar ataxia type 10: From amerindians to latin americans. Curr Neurol Neurosci Rep. 2013;13:9–11.

    Article  Google Scholar 

  11. Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol. 2001;50:234–9.

    Article  CAS  PubMed  Google Scholar 

  12. Matsuura T, Ranum LPW, Volpini V, Pandolfo M, Sasaki H, Tashiro K, et al. Spinocerebellar ataxia type 10 is rare in populations other than Mexicans. Neurology. 2002;58:983–4.

    Article  CAS  PubMed  Google Scholar 

  13. Gheno TC, Furtado GV, Saute JAM, Donis KC, Fontanari AMV, Emmel VE, et al. Spinocerebellar ataxia type 10: common haplotype and disease progression rate in Peru and Brazil. Eur J Neurol. 2017;24:892–e36.

    Article  CAS  PubMed  Google Scholar 

  14. Véliz-Otani D, Cubas-Montecino D, Milla-Neyra K, Ashizawa T, Saraiva-Pereira ML, Jardim LB, et al. Response to ATXN10 Microsatellite Distribution in a Peruvian Amerindian Population. Cerebellum. 2021;20:946–7.

    Article  PubMed  Google Scholar 

  15. Teive HAG, Munhoz RP, Raskin S, Arruda WO, de Paola L, Werneck LC, et al. Spinocerebellar ataxia type 10: Frequency of epilepsy in a large sample of Brazilian patients. Mov Disord. 2010;25:2875–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ashizawa T, **a G. Ataxia Articles from Continuum : Lifelong Learning in Neurology are provided here courtesy of American Academy of Neurology. Contin Mineap Minn. 2016;22:1208–26.

    Google Scholar 

  17. Matsushima A, Yoshida K, Genno H, Murata A, Matsuzawa S, Nakamura K, et al. Clinical assessment of standing and gait in ataxic patients using a triaxial accelerometer. Cerebellum Ataxias. 2015;2:1–7.

    Article  Google Scholar 

  18. Buckley E, Mazzà C, McNeill A. A systematic review of the gait characteristics associated with Cerebellar Ataxia. Gait Posture. 2018;60:154–63.

    Article  PubMed  Google Scholar 

  19. Geritz J, Maetzold S, Steffen M, Pilotto A, Corrà MF, Moscovich M, et al. Motor, cognitive and mobility deficits in 1000 geriatric patients: protocol of a quantitative observational study before and after routine clinical geriatric treatment - The ComOn-study. BMC Geriatr. 2020;20:1–13.

    Article  Google Scholar 

  20. Donath L, Faude O, Lichtenstein E, Nuesch C, Mündermann A. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: Comparison to an instrumented treadmill. J NeuroEngineering Rehabil. 2016;13:1–9.

    Article  Google Scholar 

  21. Nüesch C, Roos E, Pagenstert G, Mündermann A. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system. J Biomech. 2017;57:32–8. https://doi.org/10.1016/j.jbiomech.2017.03.015.

    Article  PubMed  Google Scholar 

  22. Bettecken K, Bernhard F, Sartor J, Hobert MA, Hofmann M, Gladow T, et al. No relevant association of kinematic gait parameters with Health-related Quality of Life in Parkinson’s disease. PLoS ONE. 2017;12:1–11.

    Article  Google Scholar 

  23. Pham MH, Warmerdam E, Elshehabi M, Schlenstedt C, Bergeest LM, Heller M, et al. Validation of a lower back “wearable”-based sit-to-stand and stand-to-sit algorithm for patients with Parkinson’s disease and older adults in a home-like environment. Front Neurol. 2018;9:1–11.

    Article  CAS  Google Scholar 

  24. Pham MH, Elshehabi M, Haertner L, Del Din S, Srulijes K, Heger T, et al. Validation of a step detection algorithm during straight walking and turning in Patients with Parkinson’s disease and older adults using an inertial measurement unit at the lower back. Front Neurol. 2017;8:1–9.

    Google Scholar 

  25. Metzger FG, Hobert MA, Ehlis AC, Hasmann SE, Hahn T, Eschweiler GW, et al. Dual tasking for the differentiation between depression and mild cognitive impairment. Front Aging Neurosci. 2016;8:1–9.

    Article  Google Scholar 

  26. Hobert MA, Meyer SI, Hasmann SE, Metzger FG, Suenkel U, Eschweiler GW, et al. Gait is associated with cognitive flexibility: A dual-tasking study in healthy older people. Front Aging Neurosci. 2017;9:1–9.

    Article  Google Scholar 

  27. Salkovic D, Hobert MA, Bellut C, Funer F, Renno S, Haertner L, et al. Evidence for a Selectively Regulated Prioritization Shift Depending on Walking Situations in Older Adults. Front Aging Neurosci. 2017;9:1–9.

    Article  Google Scholar 

  28. Del Din S, Elshehabi M, Galna B, Hobert MA, Warmerdam E, Suenkel U, et al. Gait analysis with wearables predicts conversion to parkinson disease. Ann Neurol. 2019;86:357–67.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kressig RW, Beauchet O, Gaitrite E, Group N. Guidelines for clinical applications of spatio-temporal. Aging Clin Exp Res. 2005;18:174–6.

    Article  Google Scholar 

  30. Bock O, Engelhard K, Guardiera P, Allmer H, Kleinert J. Gerontechnology and human cognition. IEEE Eng Med Biol Mag. 2008;27:23–8.

    Article  Google Scholar 

  31. Schniepp R, Wuehr M, Neuhaeusser M, Kamenova M, Dimitriadis K, Klopstock T, et al. Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov Disord. 2012;27:125–31.

    Article  PubMed  Google Scholar 

  32. Braga-Neto P, Godeiro-Junior C, Dutra LA, Pedroso JL, Barsottini OGP. Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA). Arq Neuropsiquiatr. 2010;68:228–30.

    Article  PubMed  Google Scholar 

  33. Camargos FFO, Dias RC, Dias JMD, Freire MTF. Cross-cultural adaptation and evaluation of the psychometric properties of the Falls Efficacy Scale-International Among Elderly Brazilians (FES-I-BRAZIL). Rev Bras Fisioter Sao Carlos Sao Paulo Braz. 2010;14:237–43.

    Article  Google Scholar 

  34. Miyamoto ST, Lombardi I, Berg KO, Ramos LR, Natour J. Brazilian version of the Berg balance scale. Braz J Med Biol Res. 2004;37:1411–21.

    Article  CAS  PubMed  Google Scholar 

  35. Minosso JSM, Amendola F, Alvarenga MRM, de Oliveira MAC. Validação, no Brasil, do Índice de Barthel em idosos atendidos em ambulatórios. Acta Paul Enferm. 2010;23:218–23.

    Article  Google Scholar 

  36. Sarmento ALR. Apresentação e aplicabilidade da versão brasileira da MoCA (Montreal Cognitive Assessment) para rastreio de Comprometimento Cognitivo Leve. Master's thesis, Universidade Federal de São Paulo. 2009.

  37. Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Don R, et al. Gait pattern in inherited cerebellar ataxias. Cerebellum. 2012;11:194–211.

    Article  PubMed  Google Scholar 

  38. Bunn LM, Marsden JF, Giunti P, Day BL. Stance instability in spinocerebellar ataxia type 6. Mov Disord. 2013;28:510–6.

    Article  PubMed  Google Scholar 

  39. Velázquez-Pérez L, Rodriguez-Labrada R, González-Garcés Y, Arrufat-Pie E, Torres-Vega R, Medrano-Montero J, et al. Prodromal Spinocerebellar Ataxia Type 2 Subjects Have Quantifiable Gait and Postural Sway Deficits. Mov Disord. 2021;36:471–80.

    Article  PubMed  Google Scholar 

  40. Hickey A, Gunn E, Alcock L, Del Din S, Godfrey A, Rochester L, et al. Validity of a wearable accelerometer to quantify gait in spinocerebellar ataxia type 6. Physiol Meas. 2016;37:N105–17.

    Article  PubMed  Google Scholar 

  41. Palliyath S, Hallett M, Thomas SL, Lebiedowska MK. Gait in patients with cerebellar ataxia. Mov Disord. 1998;13:958–64.

    Article  CAS  PubMed  Google Scholar 

  42. Caliandro P, Serrao M, Padua L, Silvestri G, Iacovelli C, Simbolotti C, et al. Prefrontal cortex as a compensatory network in ataxic gait: A correlation study between cortical activity and gait parameters. Restor Neurol Neurosci. 2015;33:177–87.

    PubMed  Google Scholar 

  43. Gouelle A, Mégrot F, Presedo A, Husson I, Yelnik A, Penneçot GF. The Gait Variability Index: A new way to quantify fluctuation magnitude of spatiotemporal parameters during gait. Gait Posture. 2013;38:461–5.

    Article  PubMed  Google Scholar 

  44. Stephenson J, Zesiewicz T, Gooch C, Wecker L, Sullivan K, Jahan I, et al. Gait and balance in adults with Friedreich’s ataxia. Gait Posture. 2015;41:603–7.

    Article  PubMed  Google Scholar 

  45. Ilg W, Golla H, Thier P, Giese MA. Specific influences of cerebellar dysfunctions on gait. Brain. 2007;130:786–98.

    Article  PubMed  Google Scholar 

  46. Wuehr M, Schniepp R, Ilmberger J, Brandt T, Jahn K. Speed-dependent temporospatial gait variability and long-range correlations in cerebellar ataxia. Gait Posture. 2013;37:214–8.

    Article  CAS  PubMed  Google Scholar 

  47. Milne SC, Hocking DR, Georgiou-Karistianis N, Murphy A, Delatycki MB, Corben LA. Sensitivity of Spatiotemporal Gait Parameters in Measuring Disease Severity in Friedreich Ataxia. Cerebellum. 2014;13:677–88.

    Article  CAS  PubMed  Google Scholar 

  48. Ebersbach G, Sojer M, Valldeoriola F, Wissel J, Müller J, Tolosa E, et al. Comparative analysis of gait in Parkinson’s disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. Brain. 1999;122:1349–55.

    Article  PubMed  Google Scholar 

  49. Ienaga Y, Mitoma H, Kubota K, Morita S, Mizusawa H. Dynamic imbalance in gait ataxia. Characteristics of plantar pressure measurements. J Neurol Sci. 2006;246:53–7.

    Article  PubMed  Google Scholar 

  50. Matsushima A, Yoshida K, Genno H. Ikeda S ichi. Principal component analysis for ataxic gait using a triaxial accelerometer. J NeuroEngineering Rehabil. 2017;14:1–7.

    Article  Google Scholar 

  51. Rochester L, Galna B, Lord S, Mhiripiri D, Eglon G, Chinnery PF. Gait impairment precedes clinical symptoms in spinocerebellar ataxia type 6. Mov Disord. 2014;29:252–5.

    Article  PubMed  Google Scholar 

  52. Azadian E, Torbati HRT, Kakhki ARS, Farahpour N. The effect of dual task and executive training on pattern of gait in older adults with balance impairment: A Randomized controlled trial. Arch Gerontol Geriatr. 2016;62:83–9.

    Article  PubMed  Google Scholar 

  53. Caliandro P, Conte C, Iacovelli C, Tatarelli A, Castiglia SF, Reale G, et al. Exploring risk of falls and dynamic unbalance in cerebellar ataxia by inertial sensor assessment. Sens Switz. 2019;19:1–9.

    Google Scholar 

  54. Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180:355–65.

    Article  PubMed  Google Scholar 

  55. Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, et al. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol. 2014;261:213–23.

    Article  PubMed  Google Scholar 

  56. O’Keefe JA, Guan J, Robertson E, Biskis A, Joyce J, Ouyang B, et al. The Effects of Dual Task Cognitive Interference and Fast-Paced Walking on Gait, Turns, and Falls in Men and Women with FXTAS. Cerebellum. 2021;20:212–21.

    Article  PubMed  Google Scholar 

  57. Sütçü G, Doğan M, Topuz S. Investigation of postural control and spatiotemporal parameters of gait during dual tasks in ataxic individuals. Neurol Sci. 2022;43(10):5943–9.

  58. Jacobi H, Alfes J, Minnerop M, Konczak J, Klockgether T, Timmann D. Dual task effect on postural control in patients with degenerative cerebellar disorders. Cerebellum Ataxias. 2015;2:1–7.

    Article  Google Scholar 

  59. Ilg W, Christensen A, Mueller OM, Goericke SL, Giese MA, Timmann D. Effects of cerebellar lesions on working memory interacting with motor tasks of different complexities. J Neurophysiol. 2013;110:2337–49.

    Article  PubMed  Google Scholar 

  60. Ilg W, Timmann D. Gait ataxia-specific cerebellar influences and their rehabilitation. Mov Disord. 2013;28:1566–75.

    Article  PubMed  Google Scholar 

  61. Yogev-Seligmann G, Rotem-Galili Y, Mirelman A, Dickstein R, et al. How does explicit prioritization alter walking during dual-task performance? Effects of age and sex on gait speed and variability. Phys Ther. 2010;90(2):177–86.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mirelman A, Maidan I, Bernad-Elazari H, Shustack S, et al. Effects of aging on prefrontal brain activation during challenging walking conditions. Brain Cogn. 2017;115:41–6.

    Article  PubMed  Google Scholar 

  63. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  65. Bürk K, Globas C, Bösch S, Klockgether T, Zühlke C, Daum I, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250:207–11.

    Article  PubMed  Google Scholar 

  66. Braga-Neto P, Pedroso JL, Alessi H, Dutra LA, Felício AC, Minett T, et al. Cerebellar cognitive affective syndrome in machado Joseph disease: Core clinical features. Cerebellum. 2012;11:549–56.

    Article  PubMed  Google Scholar 

  67. Moro A, Teive HAG. Comprometimento cognitivo na ataxia espinocerebelar do tipo 10. Dement e Neuropsychol. 2016;10:310–4.

    Article  Google Scholar 

  68. Moro A, Munhoz RP, Moscovich M, Arruda WO, Raskin S, Silveira-Moriyama L, et al. Nonmotor Symptoms in Patients with Spinocerebellar Ataxia Type 10. Cerebellum. 2017;16:938–44.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chirino-Pérez A, Vaca-Palomares I, Torres DL, Hernandez-Castillo CR, Diaz R, Ramirez-Garcia G, et al. Cognitive impairments in spinocerebellar ataxia type 10 and their relation to cortical thickness. Mov Disord. 2021;36(12):2910–21.

  70. Meira AT, Arruda WO, Ono SE, Franklin GL, de Carvalho NA, Raskin S, et al. Analysis of diffusion tensor parameters in spinocerebellar ataxia type 3 and type 10 patients. Parkinsonism Relat Disord. 2020;78:73–8.

    Article  PubMed  Google Scholar 

  71. Dumurgier J, Artaud F, Touraine C, Rouaud O, Tavernier B, Dufouil C, et al. Gait speed and decline in gait speed as predictors of incident dementia. J Gerontol - Ser Biol Sci Med Sci. 2017;72:655–61.

    Google Scholar 

  72. Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and incident fall risk in older adults. J Gerontol - Ser Biol Sci Med Sci. 2009;64:896–901.

    Article  Google Scholar 

  73. Verghese J, Wang C, Lipton RB, Holtzer R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry. 2007;78:929–35.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ilg W, Müller B, Faber J, van Gaalen J, Hengel H, Vogt IR, et al. Digital Gait Biomarkers Allow to Capture 1-Year Longitudinal Change in Spinocerebellar Ataxia Type 3. Mov Disord. 2022;37:2295–301.

    Article  CAS  PubMed  Google Scholar 

  75. Schniepp R, Schlick C, Pradhan C, Dieterich M, Brandt T, Jahn K, et al. The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia. J Neurol. 2016;263:1409–17.

    Article  PubMed  Google Scholar 

Download references

Funding

The study does not receive any external funding

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Barcellos.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by HC-UFPR’s Committee for Ethics in Human Research (CAAE 88366318.1.0000.0096)

Consent to Participate

All participants included in this study signed a voluntary informed consent form.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barcellos, I., Hansen, C., Strobel, G.K. et al. Spatiotemporal Gait Analysis of Patients with Spinocerebellar Ataxia Types 3 and 10 Using Inertial Measurement Units: A Comparative Study. Cerebellum (2024). https://doi.org/10.1007/s12311-024-01709-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-024-01709-7

Keywords

Navigation