Log in

Increased Purkinje Cell Complex Spike and Deep Cerebellar Nucleus Synchrony as a Potential Basis for Syndromic Essential Tremor. A Review and Synthesis of the Literature

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

We review advances in understanding Purkinje cell (PC) complex spike (CS) physiology that suggest increased CS synchrony underlies syndromic essential tremor (ET). We searched PubMed for papers describing factors that affect CS synchrony or cerebellar circuits potentially related to tremor. Inferior olivary (IO) neurons are electrically coupled, with the degree of coupling controlled by excitatory and GABAergic inputs. Clusters of coupled IO neurons synchronize CSs within parasagittal bands via climbing fibers (Cfs). When motor cortex is stimulated in rats at varying frequencies, whisker movement occurs at ~10 Hz, correlated with synchronous CSs, indicating that the IO/CS oscillatory rhythm gates movement frequency. Intra-IO injection of the GABAA receptor antagonist picrotoxin increases CS synchrony, increases whisker movement amplitude, and induces tremor. Harmaline and 5-HT2a receptor activation also increase IO coupling and CS synchrony and induce tremor. The hotfoot17 mouse displays features found in ET brains, including cerebellar GluRδ2 deficiency and abnormal PC Cf innervation, with IO- and PC-dependent cerebellar oscillations and tremor likely due to enhanced CS synchrony. Heightened coupling within the IO oscillator leads, through its dynamic control of CS synchrony, to increased movement amplitude and, when sufficiently intense, action tremor. Increased CS synchrony secondary to aberrant Cf innervation of multiple PCs likely also underlies hotfoot17 tremor. Deep cerebellar nucleus (DCN) hypersynchrony may occur secondary to increased CS synchrony but might also occur from PC axonal terminal sprouting during partial PC loss. Through these combined mechanisms, increased CS/DCN synchrony may plausibly underlie syndromic ET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, et al. Consensus statement on the classification of tremors. From the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord. 2018;33:75–87.

    PubMed  Google Scholar 

  2. Handforth A, Parker GA. Conditions associated with essential tremor in veterans: a potential role for chronic stress. Tremor Other Hyperkinet Mov (N Y). 2018;8:517.

    Google Scholar 

  3. Growdon JH, Shahani BT, Young RR. The effect of alcohol on essential tremor. Neurology. 1975;25:259–62.

    CAS  PubMed  Google Scholar 

  4. Hömberg V, Hefter H, Reiners K, Freund HJ. Differential effects of changes in mechanical limb properties on physiological and pathological tremor. J Neurol Neurosurg Psychiatry. 1987;50:568–79.

    PubMed  PubMed Central  Google Scholar 

  5. Pozos RS, Iaizzo PA. Effects of topical anesthesia on essential tremor. Electromyogr Clin Neurophysiol. 1992;32:369–72.

    CAS  PubMed  Google Scholar 

  6. Lakie M, Walsh EG, Arblaster LA, Villagra F, Roberts RC. Limb temperature and human tremors. J Neurol Neurosurg Psychiatry. 1994;57:35–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Carpenter MB, Stevens GH. Structural and functional relationships between the deep cerebellar nuclei and the brachium conjunctivum in the rhesus monkey. J Comp Neurol. 1957;107:109–63.

    CAS  PubMed  Google Scholar 

  8. Vilis T, Hore J. Effects of changes in mechanical state of limb on cerebellar intention tremor. J Neurophysiol. 1977;40:1214–24.

    CAS  PubMed  Google Scholar 

  9. Schnitzler A, Münks C, Butz M, Timmermann L, Gross J. Synchronized brain network associated with essential tremor as revealed by magnetoencephalography. Mov Disord. 2009;24:1629–35.

    PubMed  Google Scholar 

  10. Dupuis MJ, Evrard FL, Jacquerye PG, Picard GR, Lermen OG. Disappearance of essential tremor after stroke. Mov Disord. 2010;25:2884–7.

    PubMed  Google Scholar 

  11. Filip P, Lungu OV, Manto MU, Bareš M. Linking essential tremor to the cerebellum: physiological evidence. Cerebellum. 2016;15:774–80.

    PubMed  Google Scholar 

  12. Popa T, Russo M, Vidailhet M, Roze E, Lehéricy S, Bonnet C, et al. Cerebellar rTMS stimulation may induce prolonged clinical benefits in essential tremor, and subjacent changes in functional connectivity: an open label trial. Brain Stimul. 2013;6:175–9.

    CAS  PubMed  Google Scholar 

  13. Pedrosa DJ, Nelles C, Brown P, Volz LJ, Pelzer EA, Tittgemeyer M, et al. The differentiated networks related to essential tremor onset and its amplitude modulation after alcohol intake. Exp Neurol. 2017;297:50–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Eccles JC, Llinás R, Sasaki K. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol. 1966;182:268–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Häusser M. Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron. 2009;62:388–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sasaki K, Bower JM, Llinás R. Multiple Purkinje cell recording in rodent cerebellar cortex. Eur J Neurosci. 1989;1:572–86.

    PubMed  Google Scholar 

  17. Sugihara I, Lang EJ, Llinás R. Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. J Physiol Lond. 1993;470:243–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lang EJ, Sugihara I, Welsh JP, Llinás R. Patterns of spontaneous Purkinje cell complex spike activity in the awake rat. J Neurosci. 1999;19:2728–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Llinás R, Baker R, Sotelo C. Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol. 1974;37:560–71.

    PubMed  Google Scholar 

  20. Sotelo C, Llinás R, Baker R. Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol. 1974;37:541–59.

    CAS  PubMed  Google Scholar 

  21. Llinás R, Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 1981;315:549–67.

    PubMed  PubMed Central  Google Scholar 

  22. Llinás R, Yarom Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol. 1981;315:569–84.

    PubMed  PubMed Central  Google Scholar 

  23. Llinás R, Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol. 1986;376:163–82.

    PubMed  PubMed Central  Google Scholar 

  24. Bal T, McCormick DA. Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current Ih. J Neurophysiol. 1997;77:3145–56.

    CAS  PubMed  Google Scholar 

  25. Leznik E, Makarenko V, Llinás R. Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye-imaging study in the inferior olive. J Neurosci. 2002;22:2804–15.

    PubMed  PubMed Central  Google Scholar 

  26. Leznik E, Llinás R. Role of gap junctions in synchronized neuronal oscillations in the inferior olive. J Neurophysiol. 2005;94:2447–56.

    PubMed  Google Scholar 

  27. Long MA, Deans MR, Paul DL, Connors BW. Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci. 2002;22:10898–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Condorelli DF, Parenti R, Spinella F, Salinaro AT, Belluardo N, Cardile V, et al. Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur J Neurosci. 1998;10:1202–8.

    CAS  PubMed  Google Scholar 

  29. Belluardo N, Mudò G, Travato-Salinaro A, Le Gurun S, Charollais A, Serre-Beinier V, et al. Expression of connexin36 in the adult and develo** rat brain. Brain Res. 2000;865:121–38.

    CAS  PubMed  Google Scholar 

  30. Lang EJ. GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. J Neurophysiol. 2002;87:1993–2008.

    CAS  PubMed  Google Scholar 

  31. Blenkinsop TA, Lang EJ. Block of inferior olive gap junctional coupling decreases Purkinje cell complex spike synchrony and rhythmicity. J Neurosci. 2006;26:1739–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Marshall SP, van der Giessen RS, de Zeeuw CI, Lang EJ. Altered olivocerebellar activity patterns in the connexin36 knockout mouse. Cerebellum. 2007;6:287–99.

    CAS  PubMed  Google Scholar 

  33. Lang EJ, Sugihara I, Llinás R. GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J Neurophysiol. 1996;76:255–75.

    CAS  PubMed  Google Scholar 

  34. De Zeeuw CI, Lang EJ, Sugihara I, Ruigrok TJH, Eisenman LM, Mugnaini E, et al. Morphological correlates of bilateral synchrony in the rat cerebellar cortex. J Neurosci. 1996;16:3412–26.

    PubMed  PubMed Central  Google Scholar 

  35. Nelson BJ, Mugnaini E. Origins of GABAergic inputs to the inferior olive. In: Strata P, editor. The olivocerebellar system in motor control. Berlin: Springer-Verlag; 1989. p. 86–107.

    Google Scholar 

  36. De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J. Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol. 1989;284:12–35.

    PubMed  Google Scholar 

  37. Lang EJ. Organization of olivocerebellar activity in the absence of excitatory glutamatergic input. J Neurosci. 2001;21:1663–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Turecek J, Yuen GS, Han VZ, Zeng XH, Bayer KU, Welsh JP. NMDA receptor activation strengthens weak electrical coupling in mammalian brain. Neuron. 2014;81:1375–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sugihara I, Marshall SP, Lang EJ. Relationship of complex spike synchrony to the lobular and longitudinal aldolase C compartments in crus IIA of the cerebellar cortex. J Comp Neurol. 2007;501:13–29.

    CAS  PubMed  Google Scholar 

  40. Sugihara I. Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. Cerebellum. 2011;10:449–63.

    CAS  PubMed  Google Scholar 

  41. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2012;481:502–5.

    CAS  Google Scholar 

  42. Lang EJ, Blenkinsop TA. Control of cerebellar nuclear cells: a direct role for complex spikes? Cerebellum. 2011;10:694–701.

    PubMed  PubMed Central  Google Scholar 

  43. Tang T, Blenkinsop TA, Lang EJ. Complex spike synchrony dependent modulation of rat deep cerebellar nuclear activity. Elife. 2019;8:e40101.

    PubMed  PubMed Central  Google Scholar 

  44. Lang EJ, Tang T, Suh CY, **ao J, Kotsurovskyy Y, Blenkinsop TA, et al. Modulation of Purkinje cell complex spike waveform by synchrony levels in the olivocerebellar system. Front Syst Neurosci. 2014;8:210.

    PubMed  PubMed Central  Google Scholar 

  45. Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner TJ, et al. The roles of the olivocerebellar pathway in motor learning and motor control A consensus paper. Cerebellum. 2017;16:230–52.

    PubMed  PubMed Central  Google Scholar 

  46. Welsh JP, Lang EJ, Suglhara I, Llinás R. Dynamic organization of motor control within the olivocerebellar system. Nature. 1995;374:453–7.

    CAS  PubMed  Google Scholar 

  47. Mukamel EA, Nimmerjahn A, Schnitzer MJ. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron. 2009;63:747–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. De Gruijl JR, Hoogland TM, De Zeeuw CI. Behavioral correlates of complex spike synchrony in cerebellar microzones. J Neurosci. 2014;34:8937–47.

    PubMed  PubMed Central  Google Scholar 

  49. Tang T, Suh CY, Blenkinsop TA, Lang EJ. Synchrony is key: complex spike inhibition of the deep cerebellar nuclei. Cerebellum. 2016;15:10–3.

    PubMed  PubMed Central  Google Scholar 

  50. Lang EJ, Sugihara I, Llinás R. Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rats. J Physiol Lond. 2006;571:101–20.

    CAS  PubMed  Google Scholar 

  51. Horsley V, Schäfer FRS. Experiments on the character of the muscular contractions which are evoked by excitation of the various parts of the motor tract. J Physiol Lond. 1886;7:96–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Elble RJ. Physiologic and essential tremor. Neurology. 1986;36:225–31.

    CAS  PubMed  Google Scholar 

  53. Vallbo ÅB, Wessberg J. Organization of motor output in slow finger movements in man. J Physiol. 1993;469:673–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schnitzler A, Timmermann L, Gross J. Physiological and pathological oscillatory networks in the human motor system. J Physiol Paris. 2006;99:3–7.

    PubMed  Google Scholar 

  55. Brown AM, White JJ, van der Heijden ME, Zhou J, Lin T, Sillitoe RV. Purkinje cell misfiring generates high-amplitude action tremors that are corrected by cerebellar deep brain stimulation. Elife. 2020;9:e51928.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. De Montigny C, Lamarre Y. Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. Brain Res. 1973;53:81–95.

    PubMed  Google Scholar 

  57. Llinás R, Volkind RA. The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res. 1973;18:69–87.

    PubMed  Google Scholar 

  58. De Montigny C, Lamarre Y. Effects produced by local applications of harmaline in the inferior olive. Can J Physiol Pharmacol. 1975;53:845–9.

    PubMed  Google Scholar 

  59. Beitz AJ, Saxon D. Harmaline-induced climbing fiber activation causes amino acid and peptide release in the rodent cerebellar cortex and a unique temporal pattern of Fos expression in the olivo-cerebellar pathway. J Neurocytol. 2004;33:49–74.

    CAS  PubMed  Google Scholar 

  60. Llinás R, Mühlethaler M. Electrophysiology of guinea pig cerebellar nuclear cells in the in vitro brain stem–cerebellar preparation. J Physiol Lond. 1988;404:241–58.

    PubMed  PubMed Central  Google Scholar 

  61. Simantov R, Snyder SH, Oster-Granite ML. Harmaline-induced tremor in the rat: abolition by 3-acetylpyridine destruction of cerebellar climbing fibers. Brain Res. 1976;114:144–51.

    CAS  PubMed  Google Scholar 

  62. Sharabi S, Daniels D, Last D, Guez D, Zivli Z, Castel D, et al. Non-thermal focused ultrasound induced reversible reduction of essential tremor in a rat model. Brain Stimul. 2019;12:1–8.

    PubMed  Google Scholar 

  63. Lorden JF, Stratton SE, Mays LE, Oltmans GA. Purkinje cell activity in rats following chronic treatment with harmaline. Neuroscience. 1988;27:465–72.

    CAS  PubMed  Google Scholar 

  64. Martin FC, Handforth A. Carbenoxolone and mefloquine suppress tremor in the harmaline mouse model of essential tremor. Mov Disord. 2006;21:1641–9.

    PubMed  Google Scholar 

  65. LeDoux MS, Lorden JF. Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat. Exp Brain Res. 2002;145:457–67.

    PubMed  Google Scholar 

  66. Stratton SE, Lorden JF. Effect of harmaline on cells of the inferior olive in the absence of tremor: differential response of genetically dystonic and harmaline-tolerant rats. Neuroscience. 1991;41:543–9.

    CAS  PubMed  Google Scholar 

  67. Lorden JF, Oltmans GA, McKeon TW, Lutes J, Beales M. Decreased cerebellar 3′,5′-cyclic guanosine monophosphate levels and insensitivity to harmaline in the genetically dystonic rat (dt). J Neurosci. 1985;5:2618–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hurlock EC, McMahon A, Joho RH. Purkinje-cell-restricted restoration of Kv3.3 function restores complex spikes and rescues motor coordination in Kcnc3 mutants. J Neurosci. 2008;28:4640–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zagha E, Lang EJ, Rudy B. Kv3.3 channels at the Purkinje cell soma are necessary for generation of the classical complex spike waveform. J Neurosci. 2008;28:1291–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. McMahon A, Fowler SC, Perney TM, Akemann W, Knöpfel T, Joho RH. Allele-dependent changes of olivocerebellar circuit properties in the absence of the voltage-gated potassium channels Kv3.1 and Kv3.3. Eur J Neurosci. 2004;19:3317–27.

    PubMed  Google Scholar 

  71. Milner TE, Cadoret G, Lessard L, Smith AM. EMG analysis of harmaline-induced tremor in normal and three strains of mutant mice with Purkinje cell degeneration and the role of the inferior olive. J Neurophysiol. 1995;73:2568–77.

    CAS  PubMed  Google Scholar 

  72. Mignani S, Bohme GA, Birraux G, Boireau A, Jimonet P, Damour D, et al. 9-Carboxymethyl-5H,10H-imidazo[1,2-a]in deno[1,2-e]pyrazin-4-one-2-carbocylic acid (RPR117824): selective anticonvulsive and neuroprotective AMPA antagonist. Bioorg Med Chem. 2002;10:1627–37.

    CAS  PubMed  Google Scholar 

  73. Paterson NE, Malekiani SA, Foreman MM, Olivier B, Hanania T. Pharmacological characterization of harmaline-induced tremor activity in mice. Eur J Pharmacol. 2009;616:73–80.

    CAS  PubMed  Google Scholar 

  74. Shaffer CL, Hurst RS, Scialis RJ, Osgood SM, Bryce DK, Hoffmann WE, et al. Positive allosteric modulation of AMPA receptors from efficacy to toxicity: the interspecies exposure-response continuum of the novel potentiator PF-4778574. J Pharmacol Exp Ther. 2013;347:212–24.

    CAS  PubMed  Google Scholar 

  75. Gironell A, Pascual-Sedano B, Marín-Lahoz J. Perampanel, a new hope for essential tremor: an open label trial. Parkinsonism Relat Disord. 2019;60:171–2.

    PubMed  Google Scholar 

  76. Handforth A, Tse W, Elble RJ. A pilot double-blind randomized trial of perampanel for essential tremor. Mov Disord Clin Pract. 2020;7:399–404.

    PubMed  Google Scholar 

  77. Tomiyama M, Palacios JM, Cortés R, Mengod G. Flip and flop variants of AMPA receptor subunits in the human cerebellum: implication for the selective vulnerability of Purkinje cells. Synapse. 1999;31:163–7.

    CAS  PubMed  Google Scholar 

  78. Masugi-Tokita M, Tarusawa E, Watanabe M, Molnár E, Fujimoto K, Shigemoto R. Number and density of AMPA receptors in individual synapses in the rat cerebellum as revealed by SDS-digested freeze-fracture replica labeling. J Neurosci. 2007;27:2135–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Handforth A, Homanics GE, Covey DF, Krishnan K, Lee JY, Sakimura K, et al. T-type calcium channel antagonists suppress tremor in two mouse models of essential tremor. Neuropharmacology. 2010;59:380–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Park YG, Park HY, Lee CJ, Choi S, Jo S, Choi H, et al. CaV3.1 is a tremor rhythm pacemaker in the inferior olive. Proc Natl Acad Sci U S A. 2010;107:10731–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ondo WG. Current and emerging treatments of essential tremor. Neurol Clin. 2020;38:309–23.

    PubMed  Google Scholar 

  82. Handforth A. Harmaline tremor: underlying mechanisms in a potential animal model of essential tremor. Tremor Other Hyperkinet Mov (N Y). 2012;2:02–92–769-1.

    Google Scholar 

  83. Sinton CM, Krosser BI, Walton KD, Llinás RR. The effectiveness of different isomers of octanol as blockers of harmaline-induced tremor. Pflugers Arch. 1989;414:31–6.

    CAS  PubMed  Google Scholar 

  84. Nahab FB, Wittevrongel L, Ippolito D, Toro C, Grimes GJ, Starling J, et al. An open-label, single-dose, crossover study of the pharmacokinetics and metabolism of two oral formulations of 1-octanol in patients with essential tremor. Neurotherapeutics. 2011;8:753–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Boecker H, Wills AJ, Ceballos-Baumann A, Samuel M, Thompson PD, Findley LJ, et al. The effect of ethanol on alcohol-responsive essential tremor: a positron emission tomography study. Ann Neurol. 1996;39:650–8.

    CAS  PubMed  Google Scholar 

  86. Batini C, Buisseret-Delmas C, Conrath-Verrier M. Harmaline-induced tremor. I. Regional metabolic activity as revealed by [14C]2-deoxyglucose in cat. Exp Brain Res. 1981;42:371–82.

    CAS  PubMed  Google Scholar 

  87. Miwa H, Nishi K, Fuwa T, Mizuno Y. Differential expression of c-fos following administration of two tremorgenic agents: harmaline and oxotremorine. Neuroreport. 2000;11:2385–90.

    CAS  PubMed  Google Scholar 

  88. Tian JB, Bishop GA. Stimulus-dependent activation of c-Fos in neurons and glia in the rat cerebellum. J Chem Neuroanat. 2002;23:157–70.

    CAS  PubMed  Google Scholar 

  89. Kosmowska B, Ossowska K, Głowacka U, Wardas J. Tremorolytic effect of 5′-chloro-5′-deoxy-(±)-ENBA, a potent and selective adenosine A1 receptor agonist, evaluated in the harmaline-induced model in rats. CNS Neurosci Ther. 2017;23:438–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kosmowska B, Ossowska K, Konieczny J, Lenda T, Berghauzen-Maciejewska K, Wardas J. Inhibition of excessive glutamatergic transmission in the ventral thalamic nuclei by a selective adenosine A1 receptor agonist, 5′-chloro-5′-deoxy-(±)-ENBA underlies its tremorolytic effect in the harmaline-induced model of essential tremor. Neuroscience. 2020;429:106–18.

    CAS  PubMed  Google Scholar 

  91. Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, et al. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med. 2008;14:75–80.

    CAS  PubMed  Google Scholar 

  92. Lee J, Chang SY. Altered primary motor cortex neuronal activity in a rat model of harmaline-induced tremor during thalamic deep brain stimulation. Front Cell Neurosci. 2019;13:448.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Pahapill PA, Levy R, Dostrovsky JO, Davis KD, Rezai AR, Tasker RR, et al. Tremor arrest with thalamic microinjections of muscimol in patients with essential tremor. Ann Neurol. 1999;46:249–52.

    CAS  PubMed  Google Scholar 

  94. Sugihara I, Lang EJ, Llinás R. Serotonin modulation of inferior olivary oscillations and synchronicity: a multiple-electrode study in the rat cerebellum. Eur J Neurosci. 1995;7:521–34.

    CAS  PubMed  Google Scholar 

  95. Wiklund L, Sjölund B, Björklund A. Morphological and functional studies on the serotoninergic innervation of the inferior olive. J Physiol Paris. 1981;77:183–6.

    CAS  PubMed  Google Scholar 

  96. Barragan LA, Delhaye-Bouchaud N, Laget P. Drug-induced activation of the inferior olivary nucleus in young rabbits. Differential effects of harmaline and quipazine. Neuropharmacology. 1985;24:645–54.

    CAS  PubMed  Google Scholar 

  97. Costall B, Kelly DM, Naylor RJ. The importance of 5-hydroxytryptamine for the induction of harmine tremor and its antagonism by dopaminergic agonists assessed by lesions of the midbrain raphe nuclei. Eur J Pharmacol. 1976;35:109–19.

    CAS  PubMed  Google Scholar 

  98. Mehta H, Saravanan KS, Mohanakumar KP. Serotonin synthesis inhibition in olivo-cerebellar system attenuates harmaline-induced tremor in Swiss albino mice. Behav Brain Res. 2003;145:31–6.

    CAS  PubMed  Google Scholar 

  99. Arshaduddin M, Kadasah S, Al Deeb S, Al Moutaery K, Tariq M. Exacerbation of harmaline-induced tremor by imipramine. Pharmacol Biochem Behav. 2005;81:9–14.

    CAS  PubMed  Google Scholar 

  100. Arshaduddin M, Al Kadasah S, Biary N, Al Deeb S, Al Moutaery K, Tariq M. Citalopram, a selective serotonin reuptake inhibitor augments harmaline-induced tremor in rats. Behav Brain Res. 2004;153:15–20.

    CAS  PubMed  Google Scholar 

  101. Lamarre Y, Mercier LA. Neurophysiological studies of harmaline-induced tremor in the cat. Can J Physiol Pharmacol. 1971;49:1049–58.

    CAS  PubMed  Google Scholar 

  102. Alviña K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K. Questioning the role of rebound firing in the cerebellum. Nat Neurosci. 2008;11:1256–8.

    PubMed  PubMed Central  Google Scholar 

  103. Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI. Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci U S A. 2010;107:8410–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bengtsson F, Ekerot CF, Jörntell H. In vivo analysis of inhibitory synaptic inputs and rebounds in deep cerebellar nuclear neurons. PLoS One. 2011;6:e18822.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Dykstra S, Engbers JD, Bartoletti TM, Turner RW. Determinants of rebound burst responses in rat cerebellar nuclear neurons to physiological stimuli. J Physiol. 2016;594:985–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Barbagallo G, Arabia G, Novellino F, Nisticò R, Salsone M, Morelli M, et al. Increased glutamate + glutamine levels in the thalamus of patients with essential tremor: a preliminary proton MR spectroscopic study. Parkinsonism Relat Disord. 2018;47:57–63.

    PubMed  Google Scholar 

  107. Kobayashi K, Katayama Y, Kasai M, Oshima H, Fukaya C, Yamamoto T. Localization of thalamic cells with tremor-frequency activity in Parkinson’s disease and essential tremor. Acta Neurochir Suppl. 2003;87:137–9.

    CAS  PubMed  Google Scholar 

  108. Hanson TL, Fuller AM, Lebedev MA, Turner DA, Nicolelis MA. Subcortical neuronal ensembles: an analysis of motor task association, tremor, oscillations, and synchrony in human patients. J Neurosci. 2012;32:8620–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Najac M, Raman IM. Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons. J Neurosci. 2015;35:544–9.

    PubMed  PubMed Central  Google Scholar 

  110. Uusisaari M, Obata K, Knopfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol. 2007;97:901–11.

    CAS  PubMed  Google Scholar 

  111. Marshall SP, Lang EJ. Local changes in the excitability of the cerebellar cortex produce spatially restricted changes in complex spike synchrony. J Neurosci. 2009;29:14352–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Jenkins IH, Bain PG, Colebatch JG, Thompson PD, Findley LJ, Frackowiak RS, et al. A positron emission tomography study of essential tremor: evidence for overactivity of cerebellar connections. Ann Neurol. 1993;34:82–90.

    CAS  PubMed  Google Scholar 

  113. Wills AJ, Jenkins IH, Thompson PD, Findley LJ, Brooks DJ. Red nuclear and cerebellar but no olivary activation associated with essential tremor: a positron emission tomographic study. Ann Neurol. 1994;36:636–42.

    CAS  PubMed  Google Scholar 

  114. Conti V, Aghaie A, Cilli M, Martin N, Caridi G, Musante L, et al. crv4, a mouse model for human ataxia associated with kyphoscoliosis caused by an mRNA splicing mutation of the metabotropic glutamate receptor 1 (Grm1). Int J Mol Med. 2006;18:593–600.

    CAS  PubMed  Google Scholar 

  115. Rossi PI, Musante I, Summa M, Pittaluga A, Emionite L, Ikehata M, et al. Compensatory molecular and functional mechanisms in nervous system of the Grm1crv4 mouse lacking the mGlu1 receptor: a model for motor coordination deficits. Cereb Cortex. 2013;23:2179–89.

    PubMed  Google Scholar 

  116. Kolasiewicz W, Kuter K, Wardas J, Ossowska K. Role of the metabotropic glutamate receptor subtype 1 in the harmaline-induced tremor in rats. J Neural Transm. 2009;116:1059–63.

    CAS  PubMed  Google Scholar 

  117. Sillevis Smitt P, Kinoshita A, De Leeuw B, Moll W, Coesmans M, Jaarsma D, et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med. 2000;342:21–7.

    CAS  PubMed  Google Scholar 

  118. Chuang WL, Huang YZ, Lu CS, Chen RS. Reduced cortical plasticity and GABAergic modulation in essential tremor. Mov Disord. 2014;29:501–7.

    PubMed  Google Scholar 

  119. Sinclair JG, Lo GF, Harris DP. Ethanol effects on the olivocerebellar system. Can J Physiol Pharmacol. 1982;60:610–4.

    CAS  PubMed  Google Scholar 

  120. Rappaport MS, Gentry RT, Schneider DR, Dole VP. Ethanol effects on harmaline-induced tremor and increase of cerebellar cyclic GMP. Life Sci. 1984;34:49–56.

    CAS  PubMed  Google Scholar 

  121. Martin FC, Thu Le A, Handforth A. Harmaline-induced tremor as a potential preclinical screening method for essential tremor medications. Mov Disord. 2005;20:298–305.

    PubMed  Google Scholar 

  122. Wallner M, Hanchar HJ, Olsen RW. Ethanol enhances α4β3δ and α6β3δ γ-aminobutyric acid type a receptors at low concentrations known to affect humans. Proc Natl Acad Sci U S A. 2003;100:15218–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kato K. Novel GABAA, receptor α subunit is expressed only in cerebellar granule cells. J Mol Biol. 1990;214:619–24.

    CAS  PubMed  Google Scholar 

  124. Hortnagl H, Tasan RO, Wieselthaler A, Kirchmair E, Sieghart W, Sperk G. Patterns of mRNA and protein expression for 12 GABAA receptor subunits in the mouse brain. Neuroscience. 2013;236:345–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Laurie DJ, Seeburg PH, Wisden W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci. 1992;12:1063–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci. 1992;12:1040–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Persohn E, Malherbe P, Richards JG. Comparative molecular neuroanatomy of cloned GABAA receptor subunits in the rat CNS. J Comp Neurol. 1992;326:193–216.

    CAS  PubMed  Google Scholar 

  128. Handforth A, Kadam PA, Kosoyan HP, Eslami P. Suppression of harmaline tremor by activation of an extrasynaptic GABAA receptor: implications for essential tremor. Tremor Other Hyperkinet Mov (N Y). 2018;8:546.

    Google Scholar 

  129. Meera P, Wallner M, Otis TS. Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABAA receptors. J Neurophysiol. 2011;106:2057–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lin CY, Louis ED, Faust PL, Koeppen AH, Vonsattel JP, Kuo SH. Abnormal climbing fibre–Purkinje cell synaptic connections in the essential tremor cerebellum. Brain. 2014;137:3149–59.

    PubMed  PubMed Central  Google Scholar 

  131. Lee D, Gan SR, Faust PL, Louis ED, Kuo SH. Climbing fiber–Purkinje cell synaptic pathology across essential tremor subtypes. Parkinsonism Relat Disord. 2018;51:24–9.

    PubMed  PubMed Central  Google Scholar 

  132. Watanabe M. Molecularmechanisms governing competitive synaptic wiring in cerebellar Purkinje cells. Tohoku J Exp Med. 2008;214:175–90.

    CAS  PubMed  Google Scholar 

  133. Mishina M, Uemura T, Yasumura M, Yoshida T. Molecular mechanism of parallel fiber–Purkinje cell synapse formation. Front Neural Circuits. 2012;6:90.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Miyazaki T, Yamasaki M, Takeuchi T, Sakimura K, Mishina M, Watanabe M. Ablation of glutamate receptor GluRδ2 in adult Purkinje cells causes multiple innervation of Cfs by inducing aberrant invasion to parallel fiber innervation territory. J Neurosci. 2010;30:15196–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Pan MK, Li YS, Wong SB, Ni CL, Wang YM, Liu WC, et al. Cerebellar oscillations driven by synaptic pruning deficits of cerebellar climbing fibers contribute to tremor pathophysiology. Sci Transl Med. 2020;12(526):eaay1769.

    PubMed  PubMed Central  Google Scholar 

  136. Hashizume M, Miyazaki T, Sakimura K, Watanabe M, Kitamura K, Kano M. Disruption of cerebellar microzonal organization in GluD2 (GluRδ2) knockout mouse. Front Neural Circuits. 2013;7:130.

    PubMed  PubMed Central  Google Scholar 

  137. Good JM, Mahoney M, Miyazaki T, Tanaka KF, Sakimura K, Watanabe M, et al. Maturation of cerebellar Purkinje cell population activity during postnatal refinement of climbing fiber network. Cell Rep. 2017;21:2066–73.

    CAS  PubMed  Google Scholar 

  138. Louis ED, Babij R, Lee M, Cortés E, Vonsattel JP. Quantification of cerebellar hemispheric Purkinje cell linear density: 32 ET cases versus 16 controls. Mov Disord. 2013;28:1854–9.

    PubMed  Google Scholar 

  139. Babij R, Lee M, Cortés E, Vonsattel JP, Faust PL, Louis ED. Purkinje cell axonal anatomy: quantifying morphometric changes in essential tremor versus control brains. Brain. 2013;136:3051–61.

    PubMed  PubMed Central  Google Scholar 

  140. Lalonde R, Strazielle C. Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res. 2007;1140:51–74.

    CAS  PubMed  Google Scholar 

  141. Grüsser-Cornehls U, Grüsser C, Bäurle J. Vermectomy enhances parvalbumin expression and improves motor performance in Weaver mutant mice: an animal model for cerebellar ataxia. Neuroscience. 1999;91:315–26.

    PubMed  Google Scholar 

  142. Roffler-Tarlov S, Beart PM, O'Gorman S, Sidman RL. Neurochemical and morphological consequences of axon terminal degeneration in cerebellar deep nuclei of mice with inherited Purkinje cell degeneration. Brain Res. 1979;168:75–95.

    CAS  PubMed  Google Scholar 

  143. Bäurle J, Grover BG, Grüsser-Cornehls U. Plasticity of GABAergic terminals in Deiters’ nucleus of weaver mutant and normal mice: a quantitative light microscopic study. Brain Res. 1992;591:305–18.

    PubMed  Google Scholar 

  144. Roffler-Tarlov S, Turey M. The content of amino acids in the develo** cerebellar cortex and deep cerebellar nuclei of granule cell deficient mutant mice. Brain Res. 1982;247:65–73.

    CAS  PubMed  Google Scholar 

  145. Handforth A. Linking essential tremor to the cerebellum-animal model evidence. Cerebellum. 2016;15:285–98.

    PubMed  Google Scholar 

  146. Louis ED, Lee M, Cortés E, Vonsattel JP, Faust PL. Matching asymmetry of tremor with asymmetry of postmortem cerebellar hemispheric changes in essential tremor. Cerebellum. 2014;13:462–70.

    PubMed  Google Scholar 

  147. Louis ED, Hernandez N, Dyke JP, Ma RE, Dydak U. In vivo dentate nucleus gamma-aminobutyric acid concentration in essential tremor vs. controls. Cerebellum. 2018;17:165–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Nandy K. Morphological changes in the cerebellar cortex of aging Macaca nemestrina. Neurobiol Aging. 1981;2:61–4.

    CAS  PubMed  Google Scholar 

  149. Sturrock RR. Age related changes in Purkinje cell number in the cerebellar nodulus of the mouse. J Hirnforsch. 1989;30:757–60.

    CAS  PubMed  Google Scholar 

  150. Lolova I, Davidoff M. Immuno- and histochemical data on changed GABA transmission in aged rat cerebellum. J Hirnforsch. 1990;31:423–8.

    CAS  PubMed  Google Scholar 

  151. Louis ED, Diaz DT, Kuo SH, Gan SR, Cortes EP, Vonsattel JPG, et al. Inferior olivary nucleus degeneration does not lessen tremor in essential tremor. Cerebellum Ataxias. 2018;5:1.

    PubMed  PubMed Central  Google Scholar 

  152. Elkouzi A, Kattah JC, Elble RJ. Hypertrophic olivary degeneration does not reduce essential tremor. Mov Disord Clin Pract. 2015;3:209–11.

    PubMed  PubMed Central  Google Scholar 

  153. Verhaart WJ, Voogd J. Hypertrophy of the inferior olives in the cat. J Neuropathol Exp Neurol. 1962;21:92–104.

    CAS  PubMed  Google Scholar 

  154. Louis ED, Lenka A. The olivary hypothesis of essential tremor: time to lay this model to rest? Tremor Other Hyperkinet Mov (N Y). 2017;7:473.

    Google Scholar 

  155. McCormick DA, Steinmetz JE, Thompson RF. Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Res. 1985;359:120–30.

    CAS  PubMed  Google Scholar 

  156. Kronenbuerger M, Tronnier VM, Gerwig M, Fromm C, Coenen VA, Reinacher P, et al. Thalamic deep brain stimulation improves eyeblink conditioning deficits in essential tremor. Exp Neurol. 2008;211:387–96.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hovsep Kosoyan, Ph.D. for assistance in figure preparation.

Funding

Supported by International Essential Tremor Foundation and by Veterans Affairs (A.H.), and by a NIH/NINDS grant R21NS101386 (E.J.L.).

Author information

Authors and Affiliations

Authors

Contributions

The first draft and literature search were performed by A.H. Both E.J.L. and A.H. contributed conceptually and to critical revisions of the work.

Corresponding author

Correspondence to Adrian Handforth.

Ethics declarations

Conflict of Interest

A.H. has received funding for clinical trials from Eisai, Medtronic, and Sonexa, and is on the Medical Board of the International Essential Tremor Foundation. E.J.L. declares no conflicts of interest.

Ethics Statement

Statement of Human and Animal Rights: This article does not contain any original studies with humans or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handforth, A., Lang, E.J. Increased Purkinje Cell Complex Spike and Deep Cerebellar Nucleus Synchrony as a Potential Basis for Syndromic Essential Tremor. A Review and Synthesis of the Literature. Cerebellum 20, 266–281 (2021). https://doi.org/10.1007/s12311-020-01197-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01197-5

Keywords

Navigation