Log in

ATXN10 Microsatellite Distribution in a Peruvian Amerindian Population

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 10 (SCA10) is a repeat expansion disease occurring mostly in Latin America, suggesting that the mutation spread with the peopling of the Americas, or that Amerindian populations, have a higher ATXN10 mutability. High frequency of large normal alleles is associated with prevalence and relative frequency of other repeat expansion diseases. To test whether the allele distribution of the SCA10-causing ATXN10 microsatellite in an Amerindian Peruvian population differs from that of other populations. The ATXN10 allele distribution in a Quechua Peruvian population from Puno, Peru, is similar to that of Finland. Mean allele size and mode were also similar to those of Mexico, Japan, and white Europeans. ATXN10 allele distribution in a healthy Amerindian population from Peru does not differ from that of other populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zu L, Figueroa KP, Grewal R, Pulst S-M. Map** of a new autosomal dominant spinocerebellar ataxia to chromosome 22. Am J Hum Genet. 1999;64:594–9.

    Article  CAS  Google Scholar 

  2. Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet. 2000;26:191–4.

    Article  CAS  Google Scholar 

  3. Wang J, Wu Y, Lei L, Shen L, Jiang H, Zhou Y, et al. Polynucleotide repeat expansion of nine spinocerebellar ataxia subtypes and dentatorubral-pallidoluysian atrophy in healthy Chinese Han population. 2010.

  4. Matsuura T, Fang P, Pearson CE, Jayakar P, Ashizawa T, Roa BB, et al. Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: repeat purity as a disease modifier? Am J Hum Genet. 2006;78:125–9.

    Article  CAS  Google Scholar 

  5. Alonso I, Jardim LB, Artigalas O, Saraiva-Pereira ML, Matsuura T, Ashizawa T, et al. Reduced penetrance of intermediate size alleles in spinocerebellar ataxia type 10. Neurology. 2006;66:1602–4.

    Article  CAS  Google Scholar 

  6. Raskin S, Ashizawa T, Teive HA, Arruda WO, Fang P, Gao R, et al. Reduced penetrance in a Brazilian family with spinocerebellar ataxia type 10. Arch Neurol. 2007;64:591–4.

    Article  Google Scholar 

  7. Matsuura T, Ashizawa T. Polymerase chain reaction amplification of expanded ATTCT repeat in spinocerebellar ataxia type 10. Ann Neurol. 2002;51:271–2.

    Article  Google Scholar 

  8. Teive HAG, Munhoz RP, Raskin S, Arruda WO, de Paola L, Werneck LC, et al. Spinocerebellar ataxia type 10: frequency of epilepsy in a large sample of Brazilian patients. Mov Disord. 2010;25:2875–8.

    Article  Google Scholar 

  9. Grewal RP, Achari M, Matsuura T, Durazo A, Tayag E, Zu L, et al. Clinical features and ATTCT repeat expansion in spinocerebellar ataxia type 10. Arch Neurol. 2002;59:1285–90.

    Article  Google Scholar 

  10. Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, et al. Clinical and genetic analysis of 4 Mexican families with spinocerebellar ataxia type 10. Ann Neurol. 2001;50:234–9.

    Article  CAS  Google Scholar 

  11. Gatto EM, Gao R, White MC, Roca MCU, Etcheverry JL, Persi G, et al. Ethnic origin and extrapyramidal signs in an Argentinean spinocerebellar ataxia type 10 family. Neurology. 2007;69:216–8.

    Article  CAS  Google Scholar 

  12. de Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O, et al. Spinocerebellar ataxias in Brazil—frequencies and modulating effects of related genes. Cerebellum. 2014;13:17–28.

    Article  CAS  Google Scholar 

  13. Gheno TC, Furtado GV, Saute JAM, Donis KC, Fontanari AMV, Emmel VE, et al. Spinocerebellar ataxia type 10: common haplotype and disease progression rate in Peru and Brazil. Eur J Neurol. 2017;24:892–e36.

    Article  CAS  Google Scholar 

  14. Abstracts of The Movement Disorder Society’s Thirteenth International Congress of Parkinson’s Disease and Movement Disorders. Mov Disord. 2009;24:S1–S653.

    Article  Google Scholar 

  15. Roxburgh RH, Smith CO, Lim JG, Bachman DF, Byrd E, Bird TD. The unique co-occurrence of spinocerebellar ataxia type 10 (SCA10) and Huntington disease. J Neurol Sci. 2013;324:176–8.

    Article  Google Scholar 

  16. Bampi GB, Bisso-Machado R, Hünemeier T, Gheno TC, Furtado GV, Veliz-Otani D, et al. Haplotype study in SCA10 families provides further evidence for a common ancestral origin of the mutation. NeuroMolecular Med. 2017;19:501–9.

    Article  CAS  Google Scholar 

  17. Bushara K, Bower M, Liu J, McFarland KN, Landrian I, Hutter D, et al. Expansion of the spinocerebellar ataxia type 10 (SCA10) repeat in a patient with Sioux Native American ancestry. PLoS One. 2013;8:e81342.

    Article  Google Scholar 

  18. Matsuura T, Ranum LPW, Volpini V, Pandolfo M, Sasaki H, Tashiro K, et al. Spinocerebellar ataxia type 10 is rare in populations other than Mexicans. Neurology. 2002;58:983–3.

  19. Wang K, McFarland KN, Liu J, Zeng D, Landrian I, **a G, et al. Spinocerebellar ataxia type 10 in Chinese Han. Neurol Genet [Internet]. 2015 [cited 2018 Jan 10];1. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809459/

  20. Naito H, Takahashi T, Kamada M, Morino H, Yoshino H, Hattori N, et al. First report of a Japanese family with spinocerebellar ataxia type 10: the second report from Asia after a report from China. PLoS One. 2017;12:e0177955.

    Article  Google Scholar 

  21. Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G, et al. Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J Hum Genet. 1998;63:1060–6.

    Article  CAS  Google Scholar 

  22. Squitieri F, Andrew SE, Goldberg YP, Kremer B, Spence N, Zelsler J, et al. DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence. Hum Mol Genet. 1994;3:2103–14.

    Article  CAS  Google Scholar 

  23. Kay C, Collins JA, Wright GEB, Baine F, Miedzybrodzka Z, Aminkeng F, et al. The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population. Am J Med Genet B Neuropsychiatr Genet. 2018;177:346–57.

    Article  CAS  Google Scholar 

  24. Semaka A, Kay C, Doty C, Collins JA, Bijlsma EK, Richards F, et al. CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. J Med Genet. 2013;50:696–703.

    Article  CAS  Google Scholar 

  25. Harris DN, Song W, Shetty AC, Levano KS, Cáceres O, Padilla C, et al. Evolutionary genomic dynamics of Peruvians before, during, and after the Inca Empire. PNAS. 2018;115:E6526–35.

    Article  CAS  Google Scholar 

  26. Sandoval JR, Salazar-Granara A, Acosta O, Castillo-Herrera W, Fujita R, Pena SD, et al. Tracing the genomic ancestry of Peruvians reveals a major legacy of pre-Columbian ancestors. J Hum Genet. 2013;58:627–34.

    Article  Google Scholar 

  27. Instituto Naional de Estadística e Informática. Resultados Definitivos de los Censos Nacionales 2017. Puno [Internet]. Lima, Perú: Instituto Nacional de Estadística e Informática; 2018 Oct. Available from: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1563/.

  28. Cornejo-Olivas M, Marca V, Dorschner MO, Inca Martinez M, Medina A, Shetty AC, et al. Target sequencing analysis of Parkinson’s disease genes in a healthy Amerindian population from Puno-Peru. San Diego, California, USA; 2014 [cited 2018 Jul 2]. Available from: http://www.ashg.org/2014meeting/abstracts/fulltext/f140122321.htm.

  29. Cornejo-Olivas M, Torres L, Velit-Salazar MR, Inca-Martinez M, Mazzetti P, Cosentino C, et al. Variable frequency of LRRK2 variants in the Latin American research consortium on the genetics of Parkinson’s disease (LARGE-PD), a case of ancestry. NPJ Parkinsons Dis. 2017;3:19.

    Article  Google Scholar 

  30. Arnold TB, Emerson JW, worldwide RCT and contributors. dgof: discrete goodness-of-fit tests [internet]. 2013 [cited 2018 Aug 2]. Available from: https://CRAN.R-project.org/package=dgof.

  31. R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. 2014.

  32. Raymond M, Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–9.

    Article  Google Scholar 

  33. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70.

    CAS  PubMed  Google Scholar 

  34. Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics. 2011;27:718–9.

    Article  Google Scholar 

  35. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.

    Article  Google Scholar 

  36. Juvonen V, Hietala M, Kairisto V, Savontaus M-L. The occurrence of dominant spinocerebellar ataxias among 251 Finnish ataxia patients and the role of predisposing large normal alleles in a genetically isolated population. Acta Neurol Scand. 2005;111:154–62.

    Article  CAS  Google Scholar 

  37. Votsi C, Zamba-Papanicolaou E, Georghiou A, Kyriakides T, Papacostas S, Kleopa KA, et al. Investigation of SCA10 in the Cypriot population: further exclusion of SCA dynamic repeat mutations. J Neurol Sci. 2012;323:154–7.

    Article  CAS  Google Scholar 

  38. Paradisi I, Ikonomu V, Arias S. Spinocerebellar ataxias in Venezuela: genetic epidemiology and their most likely ethnic descent. J Hum Genet. 2016;61:215–22.

    Article  CAS  Google Scholar 

  39. Dakin EE, Avise JC. Microsatellite null alleles in parentage analysis. Heredity. 2004;93:504–9.

    Article  CAS  Google Scholar 

  40. Almeida T, Alonso I, Martins S, Ramos EM, Azevedo L, Ohno K, et al. Ancestral origin of the ATTCT repeat expansion in spinocerebellar ataxia type 10 (SCA10). PLoS One. 2009;4:e4553.

    Article  Google Scholar 

  41. Warby SC, Montpetit A, Hayden AR, Carroll JB, Butland SL, Visscher H, et al. CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am J Hum Genet. 2009;84:351–66.

    Article  CAS  Google Scholar 

  42. Falush D, Almqvist EW, Brinkmann RR, Iwasa Y, Hayden MR. Measurement of mutational flow implies both a high new-mutation rate for Huntington disease and substantial underascertainment of late-onset cases. Am J Hum Genet. 2001;68:373–85.

    Article  CAS  Google Scholar 

  43. Falush D. Haplotype background, repeat length evolution, and Huntington’s disease. Am J Hum Genet. 2009;85:939–42.

    Article  CAS  Google Scholar 

  44. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science. 2008;319:1100–4.

    Article  CAS  Google Scholar 

  45. Falush D, Iwasa Y. Size-dependent mutability and microsatellite constraints. Mol Biol Evol. 1999;16:960–6.

    Article  CAS  Google Scholar 

  46. Templeton AR. Population genetics and microevolutionary theory. 1st ed. Hoboken, N.J: Wiley-Liss; 2006.

    Book  Google Scholar 

  47. Matsuura T, Fang P, Lin X, Khajavi M, Tsuji K, Rasmussen A, et al. Somatic and germline instability of the ATTCT repeat in spinocerebellar ataxia type 10. Am J Hum Genet. 2004;74:1216–24.

    Article  CAS  Google Scholar 

  48. Liu G, Bissler JJ, Sinden RR, Leffak M. Unstable spinocerebellar ataxia type 10 (ATTCT)·(AGAAT) repeats are associated with aberrant replication at the ATX10 locus and replication origin-dependent expansion at an ectopic site in human cells. Mol Cell Biol. 2007;27:7828–38.

    Article  CAS  Google Scholar 

  49. Cherng N, Shishkin AA, Schlager LI, Tuck RH, Sloan L, Matera R, et al. Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast. Proc Natl Acad Sci U S A. 2011;108:2843–8.

    Article  CAS  Google Scholar 

  50. Walsh B, Lynch M. Evolution and selection of quantitative traits: I. Foundations. [Internet]. 1st ed. Unpublished manuscript [cited 2017 Mar 4]. Available from: nitro.biosci.arizona.edu/zbook/NewVolume_2/newvol2.html.

Download references

Acknowledgments

We are grateful to Victoria Marca and Karina Milla-Neyra for the administrative and logistic support as well as lab assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Véliz-Otani.

Ethics declarations

The sample donors gave informed consent for further use of their DNA samples in other genetic studies related to neurological disorders. The study was approved by the Institutional Review Board at Instituto Nacional de Ciencias Neurológicas (INCN).

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Véliz-Otani, D., Inca-Martinez, M., Bampi, G.B. et al. ATXN10 Microsatellite Distribution in a Peruvian Amerindian Population. Cerebellum 18, 841–848 (2019). https://doi.org/10.1007/s12311-019-01057-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01057-x

Keywords

Navigation