Log in

Muscle strength but not balance improves after arthroscopic biodegradable polyurethane meniscus scaffold application

  • Original Article
  • Published:
MUSCULOSKELETAL SURGERY Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to assess the impact of biodegradable polyurethane meniscus scaffold implantation (BPMSI) on muscle strength and balance in comparison with the healthy contralateral knee in patients with irreparable medial meniscus defect.

Methods

This observational and prospective case-cohort study was conducted with patients who had irreparable meniscal defects and underwent arthroscopic meniscus scaffold implantation. Surgeries were carried out on the medial meniscus of 16 right and 4 left knees. Visual analog scale (VAS) was used to assess the degree of pain relief. Knee Injury and Osteoarthritis Outcome Score (KOOS) and Lysholm (LYS) score were used to evaluate the functional improvement at weeks 12, 24 and 36. Concentric and eccentric quadriceps and hamstring peak torque (PT) as well as the peak torque-to-body weight (PTB) ratio, anterior–posterior, mediolateral and overall stability indexes were assessed at the same time points.

Results

Twenty male patients with a mean age and body mass index of 32.2 ± 8.8 years and 26.2 ± 4.2 kg/m2, respectively, were included in the study. The amount of pain decreased from 7.6 ± 1.5% to 2.9 ± 1.5% at postoperative week 36. Range of motion, Lysholm score and KOOS increased from 87.0ο ± 9.5ο to 115.0ο ± 15.1ο, 30.8 ± 4.3 to 81.5 ± 5.3 and 37.4 ± 5.3 to 74.1 ± 7.2, respectively. Concentric quadriceps and hamstring peak torque values and peak torque/body weight ratios were improved in the knees that received a meniscus scaffold implant. Anterior/posterior, medial/lateral, and overall stability indexes with or without biofeedback exhibited a slight improvement, which was not statistically significant.

Conclusion

BPMSI led to decreased pain and improved function at postoperative week 36. Although muscle strength almost returned to normal, balance parameters did not recover within 36 weeks after the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Papalia R et al (2013) Scaffolds for partial meniscal replacement: an updated systematic review. Br Med Bull 107:19–40

    Article  PubMed  Google Scholar 

  2. Vrancken AC, Buma P, van Tienen TG (2013) Synthetic meniscus replacement: a review. Int Orthop 37(2):291–299

    Article  PubMed  Google Scholar 

  3. Kaleka CC et al (2014) Updates in biological therapies for knee injuries: menisci. Curr Rev Musculoskelet Med 7(3):247–255

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moran CJ et al (2015) Clinical application of scaffolds for partial meniscus replacement. Sports Med Arthrosc 23(3):156–161

    Article  PubMed  Google Scholar 

  5. Efe T et al (2012) The safety and short-term efficacy of a novel polyurethane meniscal scaffold for the treatment of segmental medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc 20(9):1822–1830

    Article  PubMed  Google Scholar 

  6. Spencer SJ et al (2012) Meniscal scaffolds: early experience and review of the literature. Knee 19(6):760–765

    Article  CAS  PubMed  Google Scholar 

  7. Kon E et al (2014) Biodegradable polyurethane meniscal scaffold for isolated partial lesions or as combined procedure for knees with multiple comorbidities: clinical results at 2 years. Knee Surg Sports Traumatol Arthrosc 22(1):128–134

    Article  PubMed  Google Scholar 

  8. Bulgheroni E et al (2016) Comparative Study of Collagen versus Synthetic-Based Meniscal Scaffolds in Treating Meniscal Deficiency in Young Active Population. Cartilage 7(1):29–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bulgheroni P et al (2013) Polyurethane scaffold for the treatment of partial meniscal tears. Clinical results with a minimum two-year follow-up. Joints 1(4):161–166

    Article  PubMed  Google Scholar 

  10. Leroy A et al (2015) PLA-poloxamer/poloxamine copolymers for ligament tissue engineering: sound macromolecular design for degradable scaffolds and MSC differentiation. Biomater Sci 3(4):617–626

    Article  CAS  PubMed  Google Scholar 

  11. Leroy A et al (2017) Actifit(R) polyurethane meniscal scaffold: MRI and functional outcomes after a minimum follow-up of 5 years. Orthop Traumatol Surg Res 103(4):609–614

    Article  CAS  PubMed  Google Scholar 

  12. Schuttler KF et al (2015) Improvement in outcomes after implantation of a novel polyurethane meniscal scaffold for the treatment of medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc 23(7):1929–1935

    Article  PubMed  Google Scholar 

  13. Schuttler KF et al (2016) Midterm follow-up after implantation of a polyurethane meniscal scaffold for segmental medial meniscus loss: maintenance of good clinical and MRI outcome. Knee Surg Sports Traumatol Arthrosc 24(5):1478–1484

    Article  PubMed  Google Scholar 

  14. Verdonk R et al (2011) Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med 39(4):774–782

    Article  PubMed  Google Scholar 

  15. Verdonk P et al (2012) Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med 40(4):844–853

    Article  PubMed  Google Scholar 

  16. Bouyarmane H et al (2014) Polyurethane scaffold in lateral meniscus segmental defects: clinical outcomes at 24 months follow-up. Orthop Traumatol Surg Res 100(1):153–157

    Article  CAS  PubMed  Google Scholar 

  17. Dhollander A, Verdonk P, Verdonk R (2016) Treatment of painful, irreparable partial meniscal defects with a polyurethane scaffold: midterm clinical outcomes and survival analysis. Am J Sports Med 44(10):2615–2621

    Article  PubMed  Google Scholar 

  18. Baynat C et al (2014) Actifit synthetic meniscal substitute: experience with 18 patients in Brest, France. Orthop Traumatol Surg Res 100(8 Suppl):S385–S389

    Article  CAS  PubMed  Google Scholar 

  19. Brophy RH, Matava MJ (2012) Surgical options for meniscal replacement. J Am Acad Orthop Surg 20(5):265–272

    Article  PubMed  Google Scholar 

  20. Gelber PE et al (2015) The magnetic resonance aspect of a polyurethane meniscal scaffold is worse in advanced cartilage defects without deterioration of clinical outcomes after a minimum two-year follow-up. Knee 22(5):389–394

    Article  PubMed  Google Scholar 

  21. Vrancken AC et al (2016) Functional biomechanical performance of a novel anatomically shaped polycarbonate urethane total meniscus replacement. Knee Surg Sports Traumatol Arthrosc 24(5):1485–1494

    Article  CAS  PubMed  Google Scholar 

  22. Vaquero J, Forriol F (2016) Meniscus tear surgery and meniscus replacement. Muscles Ligaments Tendons J 6(1):71–89

    Article  PubMed  PubMed Central  Google Scholar 

  23. Leroy A et al (2017) Actifit((R)) polyurethane meniscal scaffold: MRI and functional outcomes after a minimum follow-up of 5 years. Orthop Traumatol Surg Res 103(4):609–614

    Article  CAS  PubMed  Google Scholar 

  24. Shin YS et al (2018) Polyurethane meniscal scaffolds lead to better clinical outcomes but worse articular cartilage status and greater absolute meniscal extrusion. Knee Surg Sports Traumatol Arthrosc 26(8):2227–2238

    Article  PubMed  Google Scholar 

  25. Filardo G et al (2017) Polyurethane-based cell-free scaffold for the treatment of painful partial meniscus loss. Knee Surg Sports Traumatol Arthrosc 25(2):459–467

    Article  CAS  PubMed  Google Scholar 

  26. De Coninck T et al (2014) In-vivo evaluation of the kinematic behavior of an artificial medial meniscus implant: a pilot study using open-MRI. Clin Biomech (Bristol, Avon) 29(8):898–905

    Article  Google Scholar 

  27. Condello V et al (2019) Polyurethane scaffold implants for partial meniscus lesions: delayed intervention leads to an inferior outcome. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05760-4

    Article  PubMed  Google Scholar 

  28. Nelson WE et al (1996) Isokinetic strength following knee arthroscopy. Orthopedics 19(6):501–504

    CAS  PubMed  Google Scholar 

  29. Stensrud S, Risberg MA, Roos EM (2015) Effect of exercise therapy compared with arthroscopic surgery on knee muscle strength and functional performance in middle-aged patients with degenerative meniscus tears: a 3-mo follow-up of a randomized controlled trial. Am J Phys Med Rehabil 94(6):460–473

    Article  PubMed  Google Scholar 

  30. Houck DA et al (2018) Similar clinical outcomes following collagen or polyurethane meniscal scaffold implantation: a systematic review. Knee Surg Sports Traumatol Arthrosc 26(8):2259–2269

    Article  PubMed  Google Scholar 

  31. Mueller BT et al (2016) Rehabilitation following meniscal root repair: a clinical commentary. J Orthop Sports Phys Ther 46(2):104–113

    Article  PubMed  Google Scholar 

  32. Ganderup T et al (2017) Recovery of lower extremity muscle strength and functional performance in middle-aged patients undergoing arthroscopic partial meniscectomy. Knee Surg Sports Traumatol Arthrosc 25(2):347–354

    Article  PubMed  Google Scholar 

  33. Ericsson YB, Roos EM, Dahlberg L (2006) Muscle strength, functional performance, and self-reported outcomes four years after arthroscopic partial meniscectomy in middle-aged patients. Arthritis Rheum 55(6):946–952

    Article  PubMed  Google Scholar 

  34. Hall M et al (2015) Knee extensor muscle strength in middle-aged and older individuals undergoing arthroscopic partial meniscectomy: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 67(9):1289–1296

    Article  Google Scholar 

  35. Hall M et al (2013) A longitudinal study of strength and gait after arthroscopic partial meniscectomy. Med Sci Sports Exerc 45(11):2036–2043

    Article  PubMed  Google Scholar 

  36. Karahan M et al (2010) Effect of partial medial meniscectomy on the proprioceptive function of the knee. Arch Orthop Trauma Surg 130(3):427–431

    Article  PubMed  Google Scholar 

  37. Malliou P et al (2012) Proprioception and functional deficits of partial meniscectomized knees. Eur J Phys Rehabil Med 48(2):231–236

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akkaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaya, M., Gursoy, S., Ozberk, N. et al. Muscle strength but not balance improves after arthroscopic biodegradable polyurethane meniscus scaffold application. Musculoskelet Surg 106, 145–153 (2022). https://doi.org/10.1007/s12306-020-00681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12306-020-00681-9

Keywords

Navigation