Log in

Whether Dye-Based Methods Are Ready for Microalbuminuria Detection: A Review of Research in the Field

  • REVIEW ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Dye-based methods are popular for serum albumin estimation. However, recently dyes have been tried for microalbuminuria detection. The dyes are non-specific for albumin and bind to the other protein fractions in the biological sample. Apart from albumin, other proteins are also excreted in the urine. Thus, dye-based microalbumin detection can produce a false positive result for microalbuminuria detection. In this context, we have observed that the literature is flooded with the discovery of various dyes that bind with albumin. In the present work, we have reviewed the suitability of dye-based albumin detection, considering the recently developed dyes. Our findings highlight a need to study various dyes/new dyes and explore their binding pattern with proteins present in the plasma/urine sample. It is urgently needed to develop an analytical method of a dye-based specific microalbuminuria detection system. Microalbuminuria is the major predictor of diabetic nephropathy. It is associated with other common clinical conditions like hypertension. Therefore, analysis of microalbuminuria is routinely done in clinical chemistry laboratories. There are excellent reviews on albumin detection. However, issues concerning dye-based albumin detection, including microalbuminuria detection, are yet to be reviewed. Immunochemical-based methods are popular for microalbuminuria detection as on date. Nevertheless, it fails to detect the immunounreactive fragments. We believe this aspect can be addressed by develo** a dye specific for albumin that can detect its small quantity in human urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cheng W, Chen H, Liu C, Ji C, Ma G, Yin M. Functional organic dyes for health-related applications. View. 2020;1:20200055. https://doi.org/10.1002/VIW.20200055.

    Article  Google Scholar 

  2. Kumar D, Banerjee D. Methods of albumin estimation in clinical biochemistry: past, present, and future. Clin Chim Acta. 2017;469:150–60.

    Article  CAS  PubMed  Google Scholar 

  3. Kumar D, Bhattacharyya R, Banerjee D. Pseudosterase activity-based specific detection of human serum albumin on gel. Talanta. 2021;224: 121906.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar D, Bhattacharyya R, Banerjee D. Fluorimetric method for specific detection of human serum albumin in urine using its pseudoesterase property. Anal Biochem. 2021;633: 114402.

    Article  CAS  PubMed  Google Scholar 

  5. Kumari M, Kumar D, Banerjee D. Microalbuminurea detection: the future challenges. Act Sci Med. 2019;3:01–01.

    Article  Google Scholar 

  6. Surender S, Kaur S, Kumar D, Chowdhary S, Kumar R, Bhattacharyya R, et al. Detection of human serum albumin on gel from sample obtained from different cardiopulmonary bypass (Cpb) filtrates in a patient on cardiopulmonary bypass surgery. Indian J Clin Biochem. 2022;37:375–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dalal R, Bruss ZS, Sehdev JS. Physiology, renal blood flow and filtration. StatPearls. Treasure Island (FL): StatPearls Publishing; 2019.

  8. Dean DF, Molitoris BA. The physiology of the glomerulus. In: Ronco C, Bellomo R, Kellum JA, Ricci Z, editors. Critical care nephrology. Philadelphia: Content Repository Only!; 2019. p. 35- 42.e2.

    Chapter  Google Scholar 

  9. Zhao X, Chen X, Chima A, Zhang Y, George J, Cobbs A, et al. Albumin induces CD44 expression in glomerular parietal epithelial cells by activating extracellular signal-regulated kinase 1/2 pathway. J Cell Physiol. 2019;234:7224–35. https://doi.org/10.1002/jcp.27477.

    Article  CAS  PubMed  Google Scholar 

  10. Gianesello L, Anglani F, Del Prete D. Protein uptake at glomerular level: Is it just the work of podocytes? Nephrol Dial Transplant. 2020;35:1675–7.

    Article  PubMed  Google Scholar 

  11. Kumari M, Sharma R, Pandey G, Ecelbarger CM, Mishra P, Tiwari S. Deletion of insulin receptor in the proximal tubule and fasting augment albumin excretion. J Cell Biochem. 2019;120:10688–96. https://doi.org/10.1002/jcb.28359.

    Article  CAS  PubMed  Google Scholar 

  12. Heathcote KL, Wilson MP, Quest DW, Wilson TW. Prevalence and duration of exercise induced albuminuria in healthy people. Clin Invest Med. 2009;32:E261-265.

    Article  CAS  PubMed  Google Scholar 

  13. Boersma C, Postma MJ, Visser ST, Atthobari J, de Jong PE, de Jong van den Berg LTW, et al. Baseline albuminuria predicts the efficacy of blood pressure-lowering drugs in preventing cardiovascular events. Br J Clin Pharmacol. 2008;65:723–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gosling P. Microalbuminuria: A sensitive indicator of non-renal disease? Ann Clin Biochem Int J Biochem Lab Med. 1995;32:439–41. https://doi.org/10.1177/000456329503200501.

    Article  Google Scholar 

  15. Prasad RM, Tikaria R. Microalbuminuria. Treasure Island: StatPearls Publishing; 2022.

    Google Scholar 

  16. Seegmiller JC, Bachmann LM. Urine albumin measurements in clinical diagnostics. Clin Chem. 2024;70:382–91.

    Article  PubMed  Google Scholar 

  17. Rossing P, Epstein M. Microalbuminuria constitutes a clinical action item for clinicians in 2021. Am J Med. 2022;135:576–80.

    Article  CAS  PubMed  Google Scholar 

  18. Barzilay JI, Farag YMK, Durthaler J. Albuminuria: an underappreciated risk factor for cardiovascular disease. JAHA. 2024;13: e030131. https://doi.org/10.1161/JAHA.123.030131.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khan HA, Iqbal S, Ahmed F, Shah S, Ahmad A. Microalbuminuria as a risk factor for ischemic cerebrovascular diseases in essential hypertension: a case control study. TPMJ. 2023;31:34–7.

    Article  Google Scholar 

  20. Parodi R, Brandani L, Romero C, Klein M. Resistant hypertension: diagnosis, evaluation, and treatment practical approach. Eur J Internal Med. 2024;S0953620523004612.

  21. van de Logt A-E, Rijpma SR, Vink CH, Prudon-Rosmulder E, Wetzels JF, van Berkel M. The bias between different albumin assays may affect clinical decision-making. Kidney Int. 2019;95:1514–7.

    Article  PubMed  Google Scholar 

  22. Xu J-F, Yang Y-S, Jiang A-Q, Zhu H-L. Detection methods and research progress of human serum albumin. Crit Rev Anal Chem. 2022;52:72–92. https://doi.org/10.1080/10408347.2020.1789835.

    Article  CAS  PubMed  Google Scholar 

  23. Van Schrojenstein LM, Van De Logt A-E, Thelen M, Wetzels JF, Van Berkel M. Serum albumin measurement in nephrology: room for improvement. Nephrol Dial Transplant. 2022;37:1792–9.

    Article  Google Scholar 

  24. Badgujar SB, Mali BC, Tandale B, Daftary SB, Lala S, Gupta S, et al. A cost-effective method for purification and characterization of human urinary albumin. J Chromatogr B. 2019;1114–1115:31–44.

    Article  Google Scholar 

  25. Spencer K, Price CP. Kinetic immunoturbidimetry: the estimation of albumin. Clin Chim Acta. 1979;95:263–76.

    Article  CAS  PubMed  Google Scholar 

  26. Fortova M, Klapkova E, Sopko B, Prusa R. Estimated total albumin in fresh urine samples based on correlation between the roche immunoturbidimetric and an in-house hplc method. Clin Lab. 2018;64.

  27. Huang Z, Zhang R, Chen H, Weng W, Lin Q, Deng D, et al. Sensitive polydopamine bi-functionalized SERS immunoassay for microalbuminuria detection. Biosens Bioelectron. 2019;142: 111542.

    Article  CAS  PubMed  Google Scholar 

  28. Tsai J-Z, Chen C-J, Settu K, Lin Y-F, Chen C-L, Liu J-T. Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria. Biosens Bioelectron. 2016;77:1175–82.

    Article  CAS  PubMed  Google Scholar 

  29. Comper WD, Jerums G, Osicka TM. Differences in urinary albumin detected by four immunoassays and high-performance liquid chromatography. Clin Biochem. 2004;37:105–11.

    Article  CAS  PubMed  Google Scholar 

  30. Comper WD, Osicka TM, Jerums G. High prevalence of immuno-unreactive intact albumin in urine of diabetic patients. Am J Kidney Dis. 2003;41:336–42.

    Article  CAS  PubMed  Google Scholar 

  31. Martínez F, Pichler G, Ruiz A, Martín-Escudero JC, Chaves FJ, Gonzalez-Albert V, et al. Immune-unreactive urinary albumin as a predictor of cardiovascular events: the Hortega Study. Nephrol Dial Transplant. 2019;34:633–41.

    Article  PubMed  Google Scholar 

  32. Toth P, Koller A, Pusch G, Bosnyak E, Szapary L, Komoly S, et al. Microalbuminuria, indicated by total versus immunoreactive urinary albumins, in acute ischemic stroke patients. J Stroke Cerebrovasc Dis. 2011;20:510–6.

    Article  PubMed  Google Scholar 

  33. Clavant SP, Sastra SA, Osicka TM, Comper WD. The analysis and characterisation of immuno-unreactive urinary albumin in healthy volunteers. Clin Biochem. 2006;39:143–51.

    Article  CAS  PubMed  Google Scholar 

  34. Osicka TM, Comper WD. Characterization of immunochemically nonreactive urinary albumin. Clin Chem. 2004;50:2286–91.

    Article  CAS  PubMed  Google Scholar 

  35. Kania K, Byrnes EA, Beilby JP, Webb SAR, Strong KJ. Urinary proteases degrade albumin: implications for measurement of albuminuria in stored samples. Ann Clin Biochem. 2010;47:151–7. https://doi.org/10.1258/acb.2009.009247.

    Article  CAS  PubMed  Google Scholar 

  36. Shaikh MO, Zhu P-Y, Wang C-C, Du Y-C, Chuang C-H. Electrochemical immunosensor utilizing electrodeposited Au nanocrystals and dielectrophoretically trapped PS/Ag/ab-HSA nanoprobes for detection of microalbuminuria at point of care. Biosens Bioelectron. 2019;126:572–80.

    Article  CAS  PubMed  Google Scholar 

  37. Esentürk MK, Akgönüllü S, Yılmaz F, Denizli A. Molecularly imprinted based surface plasmon resonance nanosensors for microalbumin detection. J Biomater Sci Polym Ed. 2019;30:646–61. https://doi.org/10.1080/09205063.2019.1600181.

    Article  CAS  PubMed  Google Scholar 

  38. Pandey S, Lu CM, Herold DA. Measurement of microalbuminuria using protein chip electrophoresis. Am J Clin Pathol. 2008;129:432–8. https://doi.org/10.1309/4JU0XQH62D3YLTGK.

    Article  CAS  PubMed  Google Scholar 

  39. Ishimoto T, Okada T, Fujisaka S, Yagi K, Tobe K, Toyooka N, et al. A new method for albuminuria measurement using a specific reaction between albumin and the luciferin of the firefly squid Watasenia Scintillans. IJMS. 2022;23:8342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuzmin VA, Nekipelova TD, Podrugina TA, Golovina GV, Kostyukov AA, Temnov VV, et al. Complex formation of albumin with tricarbocyanine dyes containing phosphonate groups. Photochem Photobiol Sci. 2016;15:1377–84.

    Article  CAS  PubMed  Google Scholar 

  41. Guo Y, Chen Y, Zhu X, Pan Z, Zhang X, Wang J, et al. Self-assembled nanosensor based on squaraine dye for specific recognition and detection of human serum albumin. Sens Actuators B Chem. 2018;255:977–85.

    Article  CAS  Google Scholar 

  42. Muller N, Lapicque F, Drelon E, Netter P. Binding sites of fluorescent probes on human serum albumin. J Pharm Pharmacol. 1994;46:300–4. https://doi.org/10.1111/j.2042-7158.1994.tb03798.x.

    Article  CAS  PubMed  Google Scholar 

  43. Ueno T, Hirayama S, Sugihara M, Miida T. The bromocresol green assay, but not the modified bromocresol purple assay, overestimates the serum albumin concentration in nephrotic syndrome through reaction with α2-macroglobulin. Ann Clin Biochem. 2016;53:97–105. https://doi.org/10.1177/0004563215574350.

    Article  CAS  PubMed  Google Scholar 

  44. Tel RM, De Jong J, Berends GT. Bromocresol purple, a non-specific colour reagent for the determination of serum albumin. Clin Chem Lab Med. 1979;17:627–31. https://doi.org/10.1515/cclm.1979.17.10.627.

    Article  CAS  Google Scholar 

  45. Bush V, Reed RG. Bromcresol purple dye-binding methods underestimate albumin that is carrying covalently bound bilirubin. Clin Chem. 1987;33:821–3.

    Article  CAS  PubMed  Google Scholar 

  46. Garcia Moreira V, Beridze Vaktangova N, Martinez Gago MD, Laborda Gonzalez B, Garcia Alonso S, Fernandez RE. Overestimation of albumin measured by bromocresol green vs bromocresol purple method: influence of acute-phase globulins. Lab Med. 2018. https://doi.org/10.1093/labmed/lmy020/5001150.

    Article  PubMed  Google Scholar 

  47. Amalia KT, Nurrahmah, Andayani U, Sakti SP, Sabarudin A. Colorimetric determination of albumin to creatinine ratio using paper-based analytical devices for rapid detection of kidney disfunction. Dushanbe: Republic of Tajikistan; 2023. p. 020002. https://doi.org/10.1063/5.0131192

  48. **ao W, Li Y, **ong Y, Chen Z, Li H. Fluorescence turn-on detection of human serum albumin based on the assembly of gold nanoclusters and bromocresol green. Anal Bioanal Chem. 2023;415:3363–74. https://doi.org/10.1007/s00216-023-04717-4.

    Article  CAS  PubMed  Google Scholar 

  49. Fan Y, Wang F, Hou F, Wei L, Zhu G, Zhao D, et al. A novel TICT-based near-infrared fluorescent probe for light-up sensing and imaging of human serum albumin in real samples. Chin Chem Lett. 2023;34: 107557.

    Article  CAS  Google Scholar 

  50. Gomes VS, Boto RE, Almeida P, Coutinho PJ, Pereira MR, Gonçalves MS, et al. Squaraine dyes as serum albumins probes: synthesis, photophysical experiments and molecular docking studies. Bioorg Chem. 2021;115: 105221.

    Article  Google Scholar 

  51. Aristova D, Volynets G, Chernii S, Losytskyy M, Balanda A, Slominskii Y, et al. Far-red pentamethine cyanine dyes as fluorescent probes for the detection of serum albumins. R Soc Open Sci. 2022;7:200453. https://doi.org/10.1098/rsos.200453.

    Article  CAS  Google Scholar 

  52. Kostyukov A, Mestergazi M, Shmykova A, Podrugina T, Pogonin V, Radchenko E, et al. Molecular docking simulation and fluorescence lifetime characteristics of nir cyanine dye complexes with albumin. IOP Conf Ser Mater Sci Eng. 2020;848: 012040.

    Article  CAS  Google Scholar 

  53. Pronkin PG, Shvedova LA, Tatikolov AS. Comparative study of the interaction of some meso-substituted anionic cyanine dyes with human serum albumin. Biophys Chem. 2020;261: 106378.

    Article  CAS  PubMed  Google Scholar 

  54. Abeywickrama CS, Li Y, Ramanah A, Owitipana DN, Wijesinghe KJ, Pang Y. Albumin-induced large fluorescence turn ON in 4-(Diphenylamino)benzothiazolium dyes for clinical applications in protein detection. Sens Actuators B Chem. 2022;368: 132199.

    Article  CAS  Google Scholar 

  55. Su Q, Zhang Y, Zhu S. Site-specific albumin tagging with chloride-containing near-infrared cyanine dyes: molecular engineering, mechanism, and imaging applications. Chem Commun. 2023. https://doi.org/10.1039/D3CC04200F.

    Article  Google Scholar 

  56. Wang Q, Yan X-T, Fan J-W, Xu S-H, Yao H, Yan C-G. Design of a serum albumin sensitive probe for cell imaging and drug delivery by modifying a fluorescent agent. J Mol Struct. 2024;1297: 136973.

    Article  CAS  Google Scholar 

  57. Costa-Tuna A, Chaves OA, Loureiro RJS, Pinto S, Pina J, Serpa C. Interaction between a water-soluble anionic porphyrin and human serum albumin unexpectedly stimulates the aggregation of the photosensitizer at the surface of the albumin. Int J Biol Macromol. 2024;255: 128210.

    Article  CAS  PubMed  Google Scholar 

  58. Chen X. NIR I cyanine dyes complexed with engineered albumin fragments for NIR II fluorescence imaging. In: Raghavachari R, Berezin MY, editors. Reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications XIV. San Francisco: SPIE; 2023. p. 1

  59. Farajzadeh-Dehkordi N, Farhadian S, Zahraei Z, Gholamian-Dehkordi N, Shareghi B. Interaction of reactive Red195 with human serum albumin: Determination of the binding mechanism and binding site by spectroscopic and molecular modeling methods. J Mol Liq. 2021;327: 114835.

    Article  CAS  Google Scholar 

  60. Patel BR, Kerman K. Calorimetric and spectroscopic detection of the interaction between a diazo dye and human serum albumin. Analyst. 2018;143:3890–9.

    Article  CAS  PubMed  Google Scholar 

  61. Li WY, Chen FF, Wang SL. Binding of reactive brilliant red to human serum albumin: insights into the molecular toxicity of sulfonic azo dyes. Protein Pept Lett. 2010;17:621–9.

    Article  CAS  PubMed  Google Scholar 

  62. Kumar D, Behal S, Bhattacharyya R, Banerjee D. β-naphthyl acetate in acetone produces a dark background for staining of esterase activity on gel. Indian J Clin Biochem. 2019;34:240–2.

    Article  CAS  PubMed  Google Scholar 

  63. Kessler MA, Meinitzer A, Wolfbeis OS. Albumin blue 580 fluorescence assay for albumin. Anal Biochem. 1997;248:180–2.

    Article  CAS  PubMed  Google Scholar 

  64. Cmiel V, Svoboda O, Koscova P, Provaznik I. Smartphone based point-of-care detector of urine albumin. In: Coté GL, editor. San Francisco, 2016. p. 971508.

  65. Laiwattanapaisal W, Kunanuvat U, Intharachuti W, Chinvongamorn C, Hannongbua S, Chailapakul O. Simple sequential injection analysis system for rapid determination of microalbuminuria. Talanta. 2009;79:1104–10.

    Article  CAS  PubMed  Google Scholar 

  66. Cai Y, Niu J-C, Du X-L, Fang F, Wu Z-Y. Novel field amplification for sensitive colorimetric detection of microalbuminuria on a paper-based analytical device. Anal Chim Acta. 2019;1080:146–52.

    Article  CAS  PubMed  Google Scholar 

  67. Somani B, Saha T, Arora M, Sharma Y. Modified bromophenol blue dye binding method for quantitation of microalbuminuria in diabetes mellitus. Med J Armed Forces India. 1995;51:110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wei YJ, Li KA, Tong SY. The interaction of Bromophenol Blue with proteins in acidic solution. Talanta. 1996;43:1–10.

    Article  CAS  PubMed  Google Scholar 

  69. Flores R. A rapid and reproducible assay for quantitative estimation of proteins using bromophenol blue. Anal Biochem. 1978;88:605–11.

    Article  CAS  PubMed  Google Scholar 

  70. Anisimovich PV, Pochinok TB, Tokareva EV. Spectrophotometric determination of proteins in biological fluids. J Anal Chem. 2017;72:1212–8. https://doi.org/10.1134/S1061934817120024.

    Article  CAS  Google Scholar 

  71. Ogino N, Ogino K, Eitoku M, Suganuma N, Nagaoka K, Kuramitsu Y. Atmos. Pollut Res. 2021;12: 101050.

    Article  CAS  Google Scholar 

  72. Er JC, Vendrell M, Tang MK, Zhai D, Chang Y-T. Fluorescent dye cocktail for multiplex drug-site map** on human serum albumin. ACS Comb Sci. 2013;15:452–7. https://doi.org/10.1021/co400060b.

    Article  CAS  PubMed  Google Scholar 

  73. Wenskowsky L, Wagner M, Reusch J, Schreuder H, Matter H, Opatz T, et al. Resolving binding events on the multifunctional human serum albumin. ChemMedChem. 2020;15:738–43. https://doi.org/10.1002/cmdc.202000069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ahn Y-H, Lee J-S, Chang Y-T. Selective human serum albumin sensor from the screening of a fluorescent rosamine library. J Comb Chem. 2008;10:376–80.

    Article  CAS  PubMed  Google Scholar 

  75. Budhathoki-Uprety J, Shah J, Korsen JA, Wayne AE, Galassi TV, Cohen JR, et al. Synthetic molecular recognition nanosensor paint for microalbuminuria. Nat Commun. 2019;10:1–9.

    Article  CAS  Google Scholar 

  76. Fatoni A, Numnuam A, Kanatharana P, Limbut W, Thavarungkul P. A novel molecularly imprinted chitosan–acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin. Analyst. 2014;139:6160–7.

    Article  CAS  PubMed  Google Scholar 

  77. Su L, Yang F, Li W, Li H, Wang C, Wang Q, Yuan L. Engineering a selective fluorescent sensor with a high signal-to-background ratio for microalbumin detection and imaging. Mater Chem Front. 2022;6:3084–93.

    Article  CAS  Google Scholar 

  78. Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, et al. Latest advances in cryogel technology for biomedical applications. Adv Ther. 2019;2:1800114. https://doi.org/10.1002/adtp.201800114.

    Article  Google Scholar 

  79. Zouaoui F, Bourouina-Bacha S, Bourouina M, Alcacer A, Bausells J, Jaffrezic-Renault N, et al. Experimental study and mathematical modeling of a glyphosate impedimetric microsensor based on molecularly imprinted chitosan film. Chemosensors. 2020;8:104.

    Article  CAS  Google Scholar 

  80. Thamma**no S, Buranachai C, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C. A copper nanoclusters probe for dual detection of microalbumin and creatinine. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;270: 120816.

    Article  CAS  Google Scholar 

  81. Areerob Y, Chanthai S, Oh W-C. A flexible mesoporous Cu doped FeSn–G–SiO2 composite based biosensor for microalbumin detection. RSC Adv. 2022;12:31950–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu Y-Y, Yu W-T, Hou T-C, Liu T-K, Huang C-L, Chen I-C, et al. A selective and sensitive fluorescent albumin probe for the determination of urinary albumin. Chem Commun. 2014;50:11507–10.

    Article  CAS  Google Scholar 

  83. Fan J, Sun W, Wang Z, Peng X, Li Y, Cao J. A fluorescent probe for site I binding and sensitive discrimination of HSA from BSA. Chem Commun. 2014;50:9573–6.

    Article  CAS  Google Scholar 

  84. Singh P, Mittal LS, Kaur S, Kaur S, Bhargava G, Kumar S. Self-assembled small molecule based fluorescent detection of serum albumin proteins: clinical detection and cell imaging. Sens Actuators B Chem. 2018;255:478–89.

    Article  CAS  Google Scholar 

  85. Li J, Wu J, Cui F, Zhao X, Li Y, Lin Y, et al. A dual functional fluorescent sensor for human serum albumin and chitosan. Sens Actuators B Chem. 2017;243:831–7.

    Article  CAS  Google Scholar 

  86. Jiang C, Luo L. Spectrofluorimetric determination of human serum albumin using a doxycycline–europium probe. Anal Chim Acta. 2004;506:171–5.

    Article  CAS  Google Scholar 

  87. Shen P, Hua J, ** H, Du J, Liu C, Yang W, et al. Recognition and quantification of HSA: a fluorescence probe across α-helices of site I and site II. Sens Actuators B Chem. 2017;247:587–94.

    Article  CAS  Google Scholar 

  88. Liao C, Li F, Huang S, Zheng B, Du J, **ao D. A specific and biocompatible fluorescent sensor based on the hybrid of GFP chromophore and peptide for HSA detection. Biosens Bioelectron. 2016;86:489–95.

    Article  CAS  PubMed  Google Scholar 

  89. Xu Y-J, Su M-M, Li H-L, Liu Q-X, Xu C, Yang Y-S, Zhu H-L. A fluorescent sensor for discrimination of HSA from BSA through selectivity evolution. Anal Chim Acta. 2018;1043:123–31.

    Article  CAS  PubMed  Google Scholar 

  90. Sun Y, Wei S, Zhao Y, Hu X, Fan J. Characterization of the interaction between 4-(tetrahydro-2-furanmethoxy)-n-octadecyl-1,8-naphthalimide and human serum albumin by molecular spectroscopy and its analytical application. Appl Spectrosc. 2012;66:464–9. https://doi.org/10.1366/11-06425.

    Article  CAS  PubMed  Google Scholar 

  91. Wei S, Sun Y, Guo P, Hu X, Fan J. A novel 4-(Tetrahydro-2-furanmethoxy)-N-octadecyl-1,8-naphthalimide based blue emitting probe: Solvent effect on the photophysical properties and protein detection. Russ J Bioorg Chem. 2012;38:469–78.

    Article  CAS  Google Scholar 

  92. Cui F, Wang J, Cui Y, Li J, Lu Y, Fan J, et al. Binding of human serum albumin to N-(P-ethoxy-phenyl)-N’-(1-naphthyl)thiourea and synchronous fluorescence determination of human serum albumin. Anal Sci. 2007;23:719–25.

    Article  CAS  PubMed  Google Scholar 

  93. Rajasekhar K, Achar CJ, Govindaraju T. A red-NIR emissive probe for the selective detection of albumin in urine samples and live cells. Org Biomol Chem. 2017;15:1584–8.

    Article  CAS  PubMed  Google Scholar 

  94. Li N, Li KA, Tong SY. Fluorometric determination for micro amounts of albumin and globulin fractions without separation by using alpha, beta, gamma, delta-tetra(4′-carboxyphenyl)porphin. Anal Biochem. 1996;233:151–5.

    Article  CAS  PubMed  Google Scholar 

  95. Luo Z, Liu B, Zhu K, Huang Y, Pan C, Wang B, et al. An environment-sensitive fluorescent probe for quantification of human serum albumin: design, sensing mechanism, and its application in clinical diagnosis of hypoalbuminemia. Dyes Pigm. 2018;152:60–6.

    Article  CAS  Google Scholar 

  96. Jana P, Patel N, Mukherjee T, Soppina V, Kanvah S. A “turn-on” Michler’s ketone–benzimidazole fluorescent probe for selective detection of serum albumins. New J Chem. 2019;43:10859–67.

    Article  CAS  Google Scholar 

  97. Tu Y, Yu Y, Zhou Z, **e S, Yao B, Guan S, et al. Specific and quantitative detection of albumin in biological fluids by tetrazolate-functionalized water-soluble aiegens. ACS Appl Mater Interfaces. 2019;11:29619–29. https://doi.org/10.1021/acsami.9b10359.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang P, Guo X, **ao Y, Zhang Q, Ding C. Twisted intramolecular charge transfer (Tict) based fluorescent probe for lighting up serum albumin with high sensitivity in physiological conditions. Spectrochim Acta Part A Mol Biomol Spectrosc. 2019;223: 117318.

    Article  CAS  Google Scholar 

  99. Zhao R, Jia T, Shi H, Huang C. A versatile probe for serum albumin and its application for monitoring wounds in live zebrafish. J Mater Chem B. 2019;7:2782–9.

    Article  CAS  PubMed  Google Scholar 

  100. Wang Q, Bian X, Suo Z, Han Y, Li H. Insights into intramolecular charge transfer fluorescent probes for recognizing human serum albumin. J Lumin. 2019;213:530–7.

    Article  CAS  Google Scholar 

  101. Coley-Grant D, Herbert M, Cornes MP, Barlow IM, Ford C, Gama R. The impact of change in albumin assay on reference intervals, prevalence of ‘hypoalbuminaemia’ and albumin prescriptions. Ann Clin Biochem. 2016;53:112–6. https://doi.org/10.1177/0004563215599560.

    Article  CAS  PubMed  Google Scholar 

  102. Doumas BT, Peters T. Origins of dye-binding methods for measuring serum albumin. Clin Chem. 2009;55:583–4.

    Article  CAS  Google Scholar 

  103. Xu Y, Wang L, Wang J, Liang H, Jiang X. Serum globulins contribute to the discrepancies observed between the bromocresol green and bromocresol purple assays of serum albumin concentration. Br J Biomed Sci. 2011;68:120–5. https://doi.org/10.1080/09674845.2011.11730338.

    Article  CAS  PubMed  Google Scholar 

  104. Wahl HG, Portz S, Moennikes R, Renz H. Underestimation of albumin in haemodialysis patients by both carbamylated albumin and the uremic toxin 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF). Nephrol Dial Transplant. 2018;33:i269–i269.

    Article  Google Scholar 

  105. Pinnell AE, Northam BE. New automated dye-binding method for serum albumin determination with bromcresol purple. Clin Chem. 1978;24:80–6.

    Article  CAS  PubMed  Google Scholar 

  106. Pugia MJ, Lott JA, Profitt JA, Cast TK. High-sensitivity dye binding assay for albumin in urine. J Clin Lab Anal. 1999;13:180–7. https://doi.org/10.1002/(SICI)1098-2825(1999)13:4%3c180::AID-JCLA7%3e3.0.CO;2-R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sereikaite J, Bumeliene Z, Bumelis VA. Bovine serum albumin-dye binding. Acta Chromatogr. 2004;15:298–307.

    Google Scholar 

Download references

Acknowledgements

MK acknowledges CSIR, New Delhi, India, for providing financial assistance in the form of fellowship (File No: 09/141(0217)/2019-EMR-I and DK acknowledges PGIMER for providing the financial aid.

Author information

Authors and Affiliations

Authors

Contributions

MK wrote the manuscript and done the formatting. DK critically gone through the content and supervised formatting. RB and DB conceptualized and supervised.

Corresponding author

Correspondence to Dibyajyoti Banerjee.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Informed Consent

Not applicable.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, M., Kumar, D., Bhattacharyya, R. et al. Whether Dye-Based Methods Are Ready for Microalbuminuria Detection: A Review of Research in the Field. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-024-01213-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-024-01213-z

Keywords

Navigation