Log in

Exon Sequence Analysis of the ATG5, ATG12, ATG9B Genes in Colorectal Cancer Patients During Radiotherapy

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Radiotherapy (RT) which is a treatment regime for cancer patients may cause genetic instability and side effects. Etiological associations exist amongst autophagy-related gene (ATG) mutation and cancer. RT increases the rate of autophagy previously proven in vitro. The aforementioned background diverted us to conduct exon mutation analysis for ATG5, ATG12, and ATG9B genes of colorectal cancer patients who were receiving neoadjuvant RT. Peripheral blood DNA from different time points (before/middle/after RT) of the same patients was isolated and most tandem repeat-containing exons of ATG5, ATG12, and ATG9B were polymerase chain reaction-amplified and examined for mutations by Sanger sequencing. CA19-9/CEA (Tumor marker of colorectal cancer/Carcinoembryonic Antigen) serum levels were retrieved from the clinic. No exon variations detected for ATG5 and ATG12 genes. However, 4 patients (17.4%) showed frameshift mutation for ATG9B gene. Exon variation analysis of 2 (8.7%) patients resulted in GGG deletion at 8G mononucleotide tandem repeat region of ATG9B. Assigning patients as before RT and after RT, CA19-9 levels in ATG9B (Mutation) patients were higher compared to ATG9B (Wild Type) patients. ATG9B is highly likely to mutate during RT and ATG9B mutation correlates to higher CEA and CA19-9 levels and patients show poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007;21(20):2525–38.

    Article  CAS  PubMed  Google Scholar 

  2. Verellen D, De RM, Linthout N, Tournel K, Soete G, Storme G. Innovations in image-guided radiotherapy. Nat Rev Cancer. 2007;7(12):949–60.

    Article  CAS  PubMed  Google Scholar 

  3. Baglan KL, Frazier RC, Yan D, Huang RR, Martinez AA, Robertson JM. The dose-volume realationship of acute small bowel toxicity from concurrent 5-FU-based chemotherapy and radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2002;52(1):176–83.

    Article  PubMed  Google Scholar 

  4. Saglar E, Unlu S, Babalioglu I, Gokce SC, Mergen H. Assessment of ER stress and autophagy induced by ionizing radiation in both radiotherapy patients and ex vivo irradiated samples. J Biochem Mol Toxicol. 2014;28(9):413–7.

    Article  CAS  PubMed  Google Scholar 

  5. Cunlift PN, Mann JR, Cameron AH, Roberts KD, Ward HN. Radiosensitivity in ataxia telangiectasia. Br J Radiol. 1975;48(569):374–6.

    Article  CAS  PubMed  Google Scholar 

  6. Morgan JL, Holcomb TM, Morrissey RW. Radiation Reaction in Ataxia Telangiectasia. Am J Dis Child. 1968;116(5):557–8.

    CAS  PubMed  Google Scholar 

  7. Oppitz U, Bernthaler U, Schindler D, Sobeck A, Hoehn H, Platzer M, et al. Sequence analysis of the ATM gene in 20 patients with RTOG grade 3 or 4 acute and/or late tissue radiation side effects. Int J Radiat Oncol Biol Phys. 1999;44(5):981–8.

    Article  CAS  PubMed  Google Scholar 

  8. West CM, Barnett GC. Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med. 2011;3(8):52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Emami B, Lyman J, Brown A, Cola L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  10. Mauri D, Pavlidis N, Ioannidis JPA. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. JNCI J Nat Cancer Institute. 2005;97(3):188–94.

    Article  Google Scholar 

  11. Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol. 2001;2(3):211–6.

    Article  CAS  PubMed  Google Scholar 

  12. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77.

    Article  CAS  PubMed  Google Scholar 

  13. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182(4):685–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Metur SP, Lei Y, Zhang Z, Klionsky DJ. Regulation of autophagy gene expression and its implications in cancer. J Cell Sci. 2023;136(10):jcs260631.

    Article  CAS  PubMed  Google Scholar 

  16. Frankel LB, Lund AH. MicroRNA regulation of autophagy. Carcinogenesis. 2012;33(11):2018–25.

    Article  CAS  PubMed  Google Scholar 

  17. Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27(1):107–32.

    Article  CAS  PubMed  Google Scholar 

  18. Lang T, Reiche S, Straub M, Bredschneider M, Thumm M. Autophagy and the cvt pathway both depend on AUT9. J Bacteriol. 2000;182(8):2125–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu G, Rios L, Yan Z, Jasper A, Luera D, Luo S, et al. Autophagy regulator Atg9 is degraded by the proteasome. Biochem Biophys Res Commun. 2020;522(1):254–8.

    Article  CAS  PubMed  Google Scholar 

  20. Honda S, Arakawa S, Nishida Y, Yamaguchi H, Ishii E, Shimizu S. Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat Commun. 2014;5:4004.

    Article  CAS  PubMed  Google Scholar 

  21. Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008;112(4):1493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuma A, Komatsu M, Mizushima N. Autophagy-monitoring and autophagy-deficient mice. Autophagy. 2017;13(10):1619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12(9):823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fekete J, Györffy B. ROCplot.org: validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy using transcriptomic data of 3104 breast cancer patients. Int J Cancer. 2019;145(11):3140–51.

    Article  CAS  PubMed  Google Scholar 

  25. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cho D, Jo Y, Kim S, Park I, Kim JC. Down-regulated expression of ATG5 in colorectal cancer. Anticancer Res. 2012;32(9):4091–6.

    CAS  PubMed  Google Scholar 

  28. Liu Y, Chen X, Chen X, Liu J, Gu H, Fan R, et al. Long non-coding RNA HOTAIR knockdown enhances radiosensitivity through regulating microRNA-93/ATG12 axis in colorectal cancer. Cell Death Dis. 2020;11(3):175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu JL, He GY, Lan XL, Zeng ZC, Guan J, Ding Y, et al. Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis. 2018;7(2):16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gil J, Karpiński P, Sasiadek MM. Transcriptomic profiling for the autophagy pathway in colorectal cancer. Int J Mol Sci. 2020;21(19):7101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8(11):931–7.

    Article  CAS  PubMed  Google Scholar 

  32. Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Kim SS, et al. Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J Pathol. 2009;217(5):702–6.

    Article  CAS  PubMed  Google Scholar 

  33. Chen S, Rehman SK, Zhang W, Wen A, Yao L, Zhang J. Autophagy is a therapeutic target in anticancer drug resistance. Biochem Biophys Acta. 2010;1806(2):220–9.

    CAS  PubMed  Google Scholar 

  34. Miquel C, Jacob S, Grandjouan S, Aimé A, Viguier J, Sabourin JC, et al. Frequent alteration of DNA damage signalling and repair pathways in human colorectal cancers with microsatellite instability. Oncogene. 2007;26(40):5919–26.

    Article  CAS  PubMed  Google Scholar 

  35. Keulers TG, Koch A, van Gisbergen MW, Barbeau LMO, Zonneveld MI, de Jong MC, et al. ATG12 deficiency results in intracellular glutamine depletion, abrogation of tumor hypoxia and a favorable prognosis in cancer. Autophagy. 2022;18(8):1898–914.

    Article  CAS  PubMed  Google Scholar 

  36. Schlötterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 1992;20(2):211–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis. 2002;23(5):687–96.

    Article  CAS  PubMed  Google Scholar 

  38. Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 2011;25(5):409–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mori Y, Sato F, Selaru FM, Olaru A, Perry K, Kimos MC, et al. Instabiloty** reveals unique mutational spectra in microsatellite-unstable gastric cancers. Cancer Res. 2002;62(13):3641–5.

    CAS  PubMed  Google Scholar 

  40. Simpson AJ, Caballero OL, Pena SD. Microsatellite instability as a tool for the classification of gastric cancer. Trends Molecular Medicine. 2001;7(2):76–80.

    Article  CAS  Google Scholar 

  41. Park YA, Sohn SK, Seong J, Baik SH, Lee KY, Kim NK, et al. Serum CEA as a predictor for the response to preoperative chemoradiation in rectal cancer. J Surg Oncol. 2006;93(2):145–50.

    Article  PubMed  Google Scholar 

  42. Forones NM, Tanaka M. CEA and CA 19-9 as prognostic indexes in colorectal cancer. Hepatogastroenterology. 1999;46(26):905–8.

    CAS  PubMed  Google Scholar 

  43. **ao Y, Yuan J, Yang C, **ong J, Deng L, Liang Q, et al. 125I radioactive particles drive protective autophagy in hepatocellular carcinoma by upregulating ATG9B. J Clin Trans hepatol. 2023;11(2):360–8.

    Google Scholar 

  44. Zhong Y, Long T, Gu CS, Tang JY, Gao LF, Zhu JX, et al. MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death Differ. 2021;28(12):3251–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Istanbul University, Scientific Research, Project Unit. Project Number: TDK-21011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ş. Ümit Zeybek.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Ethical Approval

Istanbul Training and Research Hospital Ethics Committee (No.: 2015/2060).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 343 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmetoğlu Gürbüz, T., Oral, E.N., Dağoğlu Sakin, R.N. et al. Exon Sequence Analysis of the ATG5, ATG12, ATG9B Genes in Colorectal Cancer Patients During Radiotherapy. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-023-01177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-023-01177-6

Keywords

Navigation