Log in

Einfluss onkogener Viren beim oralen Plattenepithelkarzinom

The role of oncogenic viruses in oral squamous cell carcinoma

  • Leitthema
  • Published:
Der MKG-Chirurg Aims and scope

Zusammenfassung

Hintergrund

Ausgelöst durch die nun mittlerweile routinemäßige Bestimmung des Humanen Papillomavirus (HPV) beim Oropharynxkarzinom rücken onkogene Viren als Ko- oder singuläres Karzinogen in den Fokus der personalisierten Medizin. Es scheint nun Konsens darüber zu bestehen, dass die viralen onkogenen Eigenschaften des HPV auch bei bestimmten Kopf-Hals-Karzinomen ätiologisch bedeutsam sind. Hierbei spielen Lokalisation des Primärtumors und Nachweismethoden (Immunhistochemie [ICH] vs. Polymerase-Kettenreaktion [PCR] und In-Situ-Hybridisierung [ISH]) eine essenzielle Rolle. Kontrollstudien und Metaanalysen deuten darauf hin, dass bei ca. 6–25 % der oralen Plattenepithelkarzinome (OSCC) eine zusätzliche HPV-Infektion vorliegt. Bezüglich der anderen potenziellen Onkogene Epstein-Barr-Virus (EBV) und Herpes-Simplex-Typ 1-(HSV-1) sind die ätiologischen Erkenntnisse beim oralen Karzinom wesentlich fraglicher.

Methoden

Im Rahmen eines Literaturüberblicks werden die aktuell gesicherten Erkenntnisse auf tierexperimenteller und humaner Studienbasis für HPV, HSV und EBV dargestellt. Diese werden unter dem Gesichtspunkt eines möglichen ätiologischen und prognostischen Einflusses auf das OSCC bewertet.

Schlussfolgerungen

Möglicherweise spielt eine gesicherte HPV-Infektion mit den High-Risk-Subtypen 16 und 18 eine zusätzliche Rolle, wesentlich ist aber, dass gleichzeitig bekannte Noxen wie Nikotin hinsichtlich der Ätiologie definitiv überwiegen. HPV-16 ist der wichtigste Subtyp im Zusammenhang mit dem OSCC. Bei oropharyngealen oder Tonsillenkarzinomen stellt eine Infektion mit den HPV-High-Risk-Subtypen 16 und 18 dagegen ein eigenes Subkollektiv dar, für das therapeutische Modifikationen denkbar sind. Beim HSV-1 und EBV sind ätiologische Erkenntnisse in Bezug auf das OSCC sehr fraglich. Bei der HSV-1-Infektion könnte eine kokarzinogene Komponente vor allem in Kombination mit HPV-16 vorliegen, während dies beim EBV höchstwahrscheinlich vernachlässigt werden kann. Dagegen ist eine Koinfektion mit mehreren onkogenen Viren gesichert als Risikofaktor anzusehen, wobei die Gewichtung des Einflusses einzelner onkogener Viren unklar ist. Während die PCR das derzeit sensitivste Verfahren zum HPV-Nachweis darstellt, kann die IHC zu falsch-positiven Resultaten führen.

Abstract

Background

Triggered by the now routinely performed human papillomavirus (HPV) analysis in oropharyngeal carcinoma, the consideration of oncogenic viruses as a co- or singular carcinogen is becoming a focus of personalized medicine. There now seems to be a consensus that HPV has oncogenic properties not only in cervical carcinoma but also in certain regions of head and neck carcinomas. Localization of the tumor and detection methods (immunohistochemistry [IHC] versus polymerase chain reaction [PCR] and in situ hybridization [ISH]) play an essential role as influencing factors. Control studies and meta-analyzes indicate that about 6–25% of the oral squamous cell carcinoma (OSCC) have an additional HPV infection. With regard to the other potential oncogenes EBV and HSV-1, their etiological influence in oral carcinomas is much more questionable.

Methods

In a brief review of the literature, the current findings are presented on the basis of animal experiments and human studies for HPV, HSV and EBV. They are then evaluated from the perspective of a possible etiological and prognostic impact on OSCC.

Conclusions

A confirmed HPV infection with the high-risk subtypes 16 and 18 might play an additional role, but it is essential simultaniously present history of well-known noxious agents such as nicotine definitely outweigh the latter in terms of oncogenic influence. HPV type 16 is the most common high-risk-subtype associated with OSCC. Completely different is the situation with oropharyngeal- or tonsillar carcinomas, in which an infection with the HPV high-risk subtypes 16 and 18 is a subset of its own. In HSV-1 and EBV, these etiological findings are much more questionable with respect to the OSCC. In HSV-1 infection, a co-carcinogenic component especially in case of coinfection with HPV 16 could be present, while in EBV this can certainly be neglected. Once again, it has been proven that a coinfection with several oncogenic viruses is considered a risk factor, whereas the weighting in relation to the influence of a single oncogenic virus is unclear. While PCR is currently the most sensitive method for HPV detection IHC can lead to false positive data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Literatur

  1. Beachler DC, D’Souza G (2013) Oral human papillomavirus infection and head and neck cancers in HIV-infected individuals. Curr Opin Oncol 25(5):503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beachler DC, Abraham AG, Silverberg MJ et al (2014) Incidence and risk factors of HPV-related and HPV-unrelated head and neck squamous cell carcinoma in HIV-infected individuals. Oral Oncol 50(12):1169–1176

    Article  PubMed  PubMed Central  Google Scholar 

  3. den Boon JA, Pyeon D, Wang SS et al (2015) Molecular transitions from papillomavirus infection to cervical precancer and cancer: role of stromal estrogen receptor signaling. Proc Natl Acad Sci USA 112(25):E3255–E3264

    Article  Google Scholar 

  4. Castellsague X, Alemany L, Quer M et al (2016) HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 patients. J Natl Cancer Inst 108(6):djv403. https://doi.org/10.1093/jnci/djv403

    Article  PubMed  Google Scholar 

  5. Demir F, Kimiloglu E, Igdem AA, Ayanoglu YT, Erdogan N (2014) High risk HPV in situ hybridization, p16 INK 4A, and survivin expressions in cervical carcinomas and intraepithelial neoplasms: evaluation of prognostic factors. Eur J Gynaecol Oncol 35(6):708–717

    CAS  PubMed  Google Scholar 

  6. DeMonbreun WA, Goodpasture EW (1932) Infectious oral papillomatosis of dogs. Am J Pathol 8(1):43–U23

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Doorbar J, Raj K (2007) Biology of papillomavirus replication in infected epithelium. Future Virol 2(6):573–586

    Article  CAS  Google Scholar 

  8. Duff R, Rapp F (1973) Oncogenic transformation of hamster embryo cells after exposure to inactivated herpes simplex virus type 1. J Virol 12(2):209–217

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Eglin RP, Scully C, Lehner T, Wardbooth P, Mcgregor IA (1983) Detection of RNA complementary to herpes-simplex virus in human oral squamous-cell carcinoma. Lancet 2(8353):766–768

    Article  CAS  PubMed  Google Scholar 

  10. Epstein MA, Holt SJ (1963) Electron microscope observations on the surface adenosine triphosphatase-like enzymes of Hela cells infected with herpes virus. J Cell Biol 19:337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferlay J, Soerjomataram I, Dikshit R et al (2014) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–386

    Article  PubMed  Google Scholar 

  12. Fleming DT, McQuillan GM, Johnson RE et al (1997) Herpes simplex virus type 2 in the United States, 1976 to 1994. N Engl J Med 337(16):1105–1111

    Article  CAS  PubMed  Google Scholar 

  13. Galloway DA, McDougall JK (1983) The oncogenic potential of herpes simplex viruses: evidence for a „hit-and-run“ mechanism. Nature 302(5903):21–24

    Article  CAS  PubMed  Google Scholar 

  14. Gillison ML, Castellsague X, Chaturvedi A et al (2014) Eurogin Roadmap: comparative epidemiology of HPV infection and associated cancers of the head and neck and cervix. Int J Cancer 134(3):497–507

    Article  CAS  PubMed  Google Scholar 

  15. Gissmann L, Wolnik L, Ikenberg H, Koldovsky U, Schnurch HG, zur Hausen H (1983) Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc Natl Acad Sci USA 80(2):560–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gonzalez SL, Stremlau M, He X, Basile JR, Munger K (2001) Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J Virol 75(16):7583–7591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gorsky M, Epstein JB (2011) Oral lichen planus: malignant transformation and human papilloma virus: a review of potential clinical implications. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111(4):461–464

    Article  PubMed  Google Scholar 

  18. Gotz C, Drecoll E, Straub M, Bissinger O, Wolff KD, Kolk A (2016) Impact of HPV infection on oral squamous cell carcinoma. Oncotarget 7(47):76704–76712

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gotz C, Wolff KD, Kesting MR, Kolk A (2016) The value of the HPV status and its detection methods in oral and oropharyngeal squamous cell carcinomas – a meta-analysis. Oncol Res Treat 39:102–102

    Article  Google Scholar 

  20. zur Hausen H (1999) Viruses in human cancers. Eur J Cancer 35(14):1878–1885

    Article  PubMed  Google Scholar 

  21. Henle G, Henle W, Diehl V (1968) Relation of Burkitt’s tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci USA 59(1):94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang SH, Xu W, Waldron J et al (2015) Refining American Joint Committee on Cancer/Union for International Cancer Control TNM Stage and Prognostic Groups for Human Papillomavirus-Related Oropharyngeal Carcinomas. J Clin Oncol 33(8):836

    Article  PubMed  Google Scholar 

  23. Husain N, Neyaz A (2017) Human papillomavirus associated head and neck squamous cell carcinoma: controversies and new concepts. J Oral Biol Craniofac Res 7(3):198–205

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jain M (2016) Assesment of correlation of herpes simplex virus-1 with oral cancer and precancer – a comparative study. J Clin Diagn Res 10(8):C14–17

    Google Scholar 

  25. Jalouli J, Ibrahim SO, Mehrotra R et al (2010) Prevalence of viral (HPV, EBV, HSV) infections in oral submucous fibrosis and oral cancer from India. Acta Oto Laryngol 130(11):1306–1311

    Article  CAS  Google Scholar 

  26. Jalouli J, Ibrahim SO, Sapkota D et al (2010) Presence of human papilloma virus, herpes simplex virus and Epstein-Barr virus DNA in oral biopsies from Sudanese patients with regard to toombak use. J Oral Pathol Med 39(8):599–604

    Article  CAS  PubMed  Google Scholar 

  27. Jalouli J, Jalouli MM, Sapkota D, Ibrahim SO, Larsson PA, Sand L (2012) Human papilloma virus, herpes simplex virus and epstein barr virus in oral squamous cell carcinoma from eight different countries. Anticancer Res 32(2):571–580

    CAS  PubMed  Google Scholar 

  28. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  29. Jenson AB, Lancaster WD, Hartmann DP, Shaffer EL (1982) Frequency and distribution of papillomavirus structural antigens in verrucae, multiple papillomas, and condylomata of the oral cavity. Am J Pathol 107(2):212–218

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang D, Srinivasan A, Lozano G, Robbins PD (1993) SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene 8(10):2805–2812

    CAS  PubMed  Google Scholar 

  31. Jiang R, Ekshyyan O, Moore-Medlin T et al (2015) Association between human papilloma virus/Epstein-Barr virus coinfection and oral carcinogenesis. J Oral Pathol Med 44(1):28–36

    Article  CAS  PubMed  Google Scholar 

  32. Kolk A (2016) Der Stellenwert des HPV-Status beim oralen Plattenepithelkarzinom. In: Kirchner T, Nüssler V (Hrsg) TZM Essential. Tumorzentrum München Jahrbuch, Bd. 1. Munich Comprehensive Cancer Center, Munich, S 183–192

    Google Scholar 

  33. Lassen P, Primdahl H, Johansen J et al (2014) Impact of HPV-associated p16-expression on radiotherapy outcome in advanced oropharynx and non-oropharynx cancer. Radiotherapy and oncology : journal of the European Society for Therapeutic. Radiol Oncol 113(3):310–316

    Article  Google Scholar 

  34. Lassen P, Lacas B, Pignon JP et al (2017) Prognostic impact of HPV-associated p16-expression and smoking status on outcomes following radiotherapy for oropharyngeal cancer: The MARCH-HPV project. Radiother Oncol. https://doi.org/10.1016/j.radonc.2017.10.018

    Google Scholar 

  35. Lucke B (1938) Carcinoma in the leopard frog: its probable causation by a virus. J Exp Med 68(4):457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Manaker RA, Groupe V (1956) Discrete foci of altered chicken embryo cells associated with rous sarcoma virus in tissue culture. Virology 2(6):838–840

    Article  PubMed  Google Scholar 

  37. McMurray HR, Nguyen D, Westbrook TF, McAnce DJ (2001) Biology of human papillomaviruses. Int J Exp Pathol 82(1):15–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mirghani H, Amen F, Moreau F, Lacau St Guily J (2015) Do high-risk human papillomaviruses cause oral cavity squamous cell carcinoma? Oral Oncol 51(3):229–236

    Article  CAS  PubMed  Google Scholar 

  39. Nakanishi Y, Wakisaka N, Kondo S et al (2017) Progression of understanding for the role of Epstein-Barr virus and management of nasopharyngeal carcinoma. Cancer Metastasis Rev 36(3):435–447. https://doi.org/10.1007/s10555-017-9693-x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Osazuwa-Peters N, Simpson MC, Massa ST, Adjei Boakye E, Antisdel JL, Varvares MA (2017) 40-year incidence trends for oropharyngeal squamous cell carcinoma in the United States. Oral Oncol 74:90–97

    Article  PubMed  Google Scholar 

  41. O’Sullivan B, Huang SH, Siu LL et al (2013) Deintensification candidate subgroups in human papillomavirus-related oropharyngeal cancer according to minimal risk of distant metastasis. J Clin Oncol 31(5):543–550. https://doi.org/10.1200/JCO.2012.44.0164

    Article  PubMed  Google Scholar 

  42. Peng H, Chen L, Zhang Y et al (2016) Survival analysis of patients with advanced-stage nasopharyngeal carcinoma according to the Epstein-Barr virus status. Oncotarget 7(17):24208–24216

    Article  PubMed  PubMed Central  Google Scholar 

  43. Polz-Gruszka D, Morshed K, Stec A, Polz-Dacewicz M (2015) Prevalence of Human papillomavirus (HPV) and Epstein-Barr virus (EBV) in oral and oropharyngeal squamous cell carcinoma in south-eastern Poland. Infect Agents Cancer 10:37

    Article  PubMed  PubMed Central  Google Scholar 

  44. Praetorius-Clausen F, Willis JM (1971) Papova virus-like particles in focal epithelial hyperplasia. Scand J Dent Res 79(5):362–365

    CAS  PubMed  Google Scholar 

  45. Queen KJ, Shi M, Zhang F, Cvek U, Scott RS (2013) Epstein-Barr virus-induced epigenetic alterations following transient infection. Int J Cancer 132(9):2076–2086

    Article  CAS  PubMed  Google Scholar 

  46. Reuschenbach M, Waterboer T, Wallin KL et al (2008) Characterization of humoral immune responses against p16, p53, HPV16 E6 and HPV16 E7 in patients with HPV-associated cancers. Int J Cancer 123(11):2626–2631

    Article  CAS  PubMed  Google Scholar 

  47. Reuschenbach M, Kansy K, Garbe K et al (2013) Lack of evidence of human papillomavirus-induced squamous cell carcinomas of the oral cavity in southern Germany. Oral Oncol 49(9):937–942

    Article  CAS  PubMed  Google Scholar 

  48. Rous P (1911) A sarcoma of the fowl transmissible by an agent from the tumor cells. J Exp Med 13(4):397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sand L, Jalouli J (2014) Viruses and oral cancer. Is there a link? Microbes Infect 16(5):371–378

    Article  CAS  PubMed  Google Scholar 

  50. Sand LP, Jalouli J, Larsson PA, Hirsch JM (2002) Prevalence of Epstein-Barr virus in oral squamous cell carcinoma, oral lichen planus, and normal oral mucosa. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93(5):586–592. https://doi.org/10.1067/moe.2002.124462

    Article  PubMed  Google Scholar 

  51. Schneweis KE (1962) Serological studies on the type differentiation of herpesvirus hominis. Z Immun Exp Ther 124:24–48

    CAS  PubMed  Google Scholar 

  52. Shope RE (1935) Serial transmission of virus of infectious papillomatosis in domestic rabbits. Proc Soc Exp Biol Med 32(6):830–832

    Article  Google Scholar 

  53. Straub M, Drecoll E, Pfarr N et al (2016) CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity. Oncotarget 7(11):12024–12034. https://doi.org/10.18632/oncotarget.7593

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tanaka TI, Alawi F (2018) Human papillomavirus and oropharyngeal cancer. Dent Clin North Am 62(1):111–120

    Article  PubMed  Google Scholar 

  55. Temin HM, Rubin H (1958) Characteristics of an assay for rous sarcoma virus and rous sarcoma cells in tissue culture. Virology 6(3):669–688

    Article  CAS  PubMed  Google Scholar 

  56. Tsao SW, Tsang CM, Lo KW (2017) Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc Lond, B, Biol Sci. https://doi.org/10.1098/rstb.2016.0270

    PubMed  Google Scholar 

  57. Turunen A, Rautava J, Grenman R, Syrjanen K, Syrjanen S (2017) Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) associated with poor prognosis of head and neck carcinomas. Oncotarget 8(16):27328–27338

    PubMed  Google Scholar 

  58. Wilms T, Khan G, Coates PJ et al (2017) No evidence for the presence of Epstein-Barr virus in squamous cell carcinoma of the mobile tongue. PLoS ONE. https://doi.org/10.1371/journal.pone.0184201

    Google Scholar 

  59. Wilting SM, Steenbergen RDM (2016) Molecular events leading to HPV-induced high grade neoplasia. Papillomavirus Res 2:85–88. https://doi.org/10.1016/j.pvr.2016.04.003

    Article  PubMed  Google Scholar 

  60. **e X, Piao L, Bullock BN et al (2014) Targeting HPV16 E6-p300 interaction reactivates p53 and inhibits the tumorigenicity of HPV-positive head and neck squamous cell carcinoma. Oncogene 33(8):1037–1046

    Article  CAS  PubMed  Google Scholar 

  61. Zevallos JP, Yim E, Brennan P et al (2016) Molecular profile of human papillomavirus-positive oropharyngeal squamous cell carcinoma stratified by smoking status. Int J Radiat Oncol Biol Phys 94(4):864–864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kolk MHBA.

Ethics declarations

Interessenkonflikt

A. Kolk gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

D. Baumhoer, Basel

U.D.A. Müller-Richter, Würzburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolk, A. Einfluss onkogener Viren beim oralen Plattenepithelkarzinom. MKG-Chirurg 11, 21–29 (2018). https://doi.org/10.1007/s12285-017-0137-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12285-017-0137-y

Schlüsselwörter

Keywords

Navigation