Log in

Biological and Chemical Approaches for Controlling Harmful Microcystis Blooms

  • Review
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The inclusion of a data availability statement is unnecessary for our review paper.

References

  • Adamec, F., Farci, D., Bína, D., Litvín, R., Khan, T., Fuciman, M., Piano, D., & Polívka, T. (2020). Photophysics of deinoxanthin, the keto-carotenoid bound to the main S-layer unit of Deinococcus radiodurans. Photochemical & Photobiological Sciences, 19, 495–503.

    Article  CAS  Google Scholar 

  • Ajayan, K. V., Chaithra, P. J., Sridharan, K., Sruthi, P., Harikrishnan, E., & Harilal, C. C. (2023). Synergistic influence of iodine and hydrogen peroxide towards the degradation of harmful algal bloom of Microcystis aeruginosa. Environmental Research, 237, 116926.

    Article  CAS  PubMed  Google Scholar 

  • Briland, R. D., Stone, J. P., Manubolu, M., Lee, J., & Ludsin, S. A. (2020). Cyanobacterial blooms modify food web structure and interactions in western Lake Erie. Harmful Algae, 92, 101586.

    Article  CAS  PubMed  Google Scholar 

  • Cha, Y., Kim, W., Park, Y., Kim, M., Son, Y., & Park, W. (2023). Antagonistic actions of Paucibacter aquatile B51 and its lasso peptide paucinodin toward cyanobacterial bloom-forming Microcystis aeruginosa PCC7806. Journal of Phycology. https://doi.org/10.1111/jpy.13412

    Article  PubMed  Google Scholar 

  • Chaffin, J. D., Westrick, J. A., Reitz, L. A., & Bridgeman, T. B. (2023). Microcystin congeners in Lake Erie follow the seasonal pattern of nitrogen availability. Harmful Algae, 127, 102466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Wang, Y., Chen, K., Shi, X., & Yang, G. (2021). Using hydrogen peroxide to control cyanobacterial blooms: A mesocosm study focused on the effects of algal density in Lake Chaohu. China. Environmental Pollution, 272, 115923.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., **g, L., Yao, Z., Meng, F., & Teng, Y. (2019). Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: A comparison with other global lakes. Environment International, 127, 267–275.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Yue, Y., Wang, J., Li, H., Wang, Z., & Zheng, Z. (2024). Microbial community dynamics and assembly mechanisms across different stages of cyanobacterial bloom in a large freshwater lake. Science of the Total Environment, 907, 168207.

    Article  CAS  Google Scholar 

  • Chen, Z., Huang, Y., Shen, Y., Zhang, J., Deng, J., & Chen, X. (2023). Denitrification shifted autotroph-heterotroph interactions in Microcystis aggregates. Environmental Research, 231, 116269.

    Article  CAS  PubMed  Google Scholar 

  • Chernova, E., Sidelev, S., Russkikh, I., Voyakina, E., & Zhakovskaya, Z. (2019). First observation of microcystin- and anatoxin-a-producing cyanobacteria in the easternmost part of the Gulf of Finland (the Baltic Sea). Toxicon, 157, 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Chi, S. C., Mothersole, D. J., Dilbeck, P., Niedzwiedzki, D. M., Zhang, H., Qian, P., Vasilev, C., Grayson, K. J., Jackson, P. J., Martin, E. C., et al. (2015). Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. Biochimica Et Biophysica Acta, 1847, 189–201.

    Article  CAS  PubMed  Google Scholar 

  • Cook, K. V., Li, C., Cai, H., Krumholz, L. R., Hambright, K. D., Paerl, H. W., Steffen, M. M., Wilson, A. E., Burford, M. A., Grossart, H. P., et al. (2020). The global Microcystis interactome. Limnology and Oceanography, 65, S194–S207.

    Article  PubMed  Google Scholar 

  • Dantas, S. B. S., Moraes, G. K. A., Araujo, A. R., & Chapla, V. M. (2023). Phenolic compounds and bioactive extract produced by endophytic fungus Coriolopsis rigida. Natural Product Research, 37, 2037–2042.

    Article  CAS  PubMed  Google Scholar 

  • Deo, S., Turton, K. L., Kainth, T., Kumar, A., & Wieden, H. J. (2022). Strategies for improving antimicrobial peptide production. Biotechnology Advances, 59, 107968.

    Article  CAS  PubMed  Google Scholar 

  • Dexter, J., McCormick, A. J., Fu, P., & Dziga, D. (2021). Microcystinase—a review of the natural occurrence, heterologous expression, and biotechnological application of MlrA. Water Research, 189, 116646.

    Article  CAS  PubMed  Google Scholar 

  • Dick, G. J., Duhaime, M. B., Evans, J. T., Errera, R. M., Godwin, C. M., Kharbush, J. J., Nitschky, H. S., Powers, M. A., Vanderploeg, H. A., Schmidt, K. C., et al. (2021). The genetic and ecophysiological diversity of Microcystis. Environmental Microbiology, 23, 7278–7313.

    Article  PubMed  Google Scholar 

  • Drábková, M., Admiraal, W., & Marsálek, B. (2007). Combined exposure to hydrogen peroxide and light–selective effects on cyanobacteria, green algae, and diatoms. Environmental Science & Technology, 41, 309–314.

    Article  Google Scholar 

  • Feng, H. R., Wang, J. A., Wang, L., **, J. M., Wu, S. W., & Zhou, C. C. (2022). Study on a novel omnidirectional ultrasonic cavitation removal system for Microcystis aeruginosa. Ultrasonics Sonochemistry, 86, 106008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, Y., Chang, X., Zhao, L., Li, X., Li, W., & Jiang, Y. (2013). Nanaomycin A methyl ester, an actinomycete metabolite: Algicidal activity and the physiological response of Microcystis aeruginosa. Ecological Engineering, 53, 306–312.

    Article  Google Scholar 

  • Guo, Y., Liu, M., Liu, L., Liu, X., Chen, H., & Yang, J. (2018). The antibiotic resistome of free-living and particle-attached bacteria under a reservoir cyanobacterial bloom. Environment International, 117, 107–115.

    Article  CAS  PubMed  Google Scholar 

  • Hall, G. C., & Jensen, R. A. (1980). Enzymological basis for growth inhibition by L-phenylalanine in the cyanobacterium Synechocystis sp. 29108. Journal of Bacteriology, 144, 1034–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, J., Jeon, B. S., Futatsugi, N., & Park, H. D. (2013). The effect of alum coagulation for in-lake treatment of toxic Microcystis and other cyanobacteria related organisms in microcosm experiments. Ecotoxicology and Environmental Safety, 96, 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Ho, J. C., Michalak, A. M., & Pahlevan, N. (2019). Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 574, 667–670.

    Article  CAS  PubMed  Google Scholar 

  • Hoke, A. K., Reynoso, G., Smith, M. R., Gardner, M. I., Lockwood, D. J., Gilbert, N. E., Wilhelm, S. W., Becker, I. R., Brennan, G. J., Crider, K. E., et al. (2021). Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS ONE, 16, e0257017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, T., Lai, M., Lin, Z., Luo, R., **ang, X., Xu, H., Pan, N., & Zuo, Z. (2023). Identification of algicidal monoterpenoids from four chemotypes of Cinnamomum camphora and their algicidal mechanisms on Microcystis aeruginosa. Environmental Research, 241, 117714.

    Article  PubMed  Google Scholar 

  • Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16, 471–483.

    Article  CAS  PubMed  Google Scholar 

  • Im, W. T., Kim, S. H., Kim, M. K., Ten, L. N., & Lee, S. T. (2006). Pleomorphomonas koreensis sp. nov., a nitrogen-fixing species in the order Rhizobiales. International Journal of Systematic and Evolutionary Microbiology, 56, 1663–1666.

    Article  CAS  PubMed  Google Scholar 

  • Imamura, N., Motoike, I., Noda, M., Adachi, K., Konno, A., & Fukami, H. (2000). Argimicin A, a novel anti-cyanobacterial compound produced by an algae-lysing bacterium. Journal of Antibiotics, 53, 1317–1319.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, S. Y., & Son, H. J. (2021). Effects of mycosubtilin homolog algicides from a marine bacterium, Bacillus sp. SY-1, against the harmful algal bloom species Cochlodinium polykrikoides. Journal of Microbiology, 59, 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, L., Yang, L., **ao, L., Shi, X., Gao, G., & Qin, B. (2007). Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.). In B. Qin, Z. Liu, & K. Havens (Eds.), Eutrophication of shallow lakes with special reference to Lake Taihu, China (pp. 161–165). Springer.

    Chapter  Google Scholar 

  • Jiang, Y., Liu, Y., & Zhang, J. (2021). Mechanisms for the stimulatory effects of a five-component mixture of antibiotics in Microcystis aeruginosa at transcriptomic and proteomic levels. Journal of Hazardous Materials, 406, 124722.

    Article  CAS  PubMed  Google Scholar 

  • **, P., Wang, H., Liu, W., Zhang, S., Lin, C., Zheng, F., & Miao, W. (2017a). Bactericidal metabolites from Phellinus noxius HN-1 against Microcystis aeruginosa. Scientific Reports, 7, 3132.

    Article  PubMed  PubMed Central  Google Scholar 

  • **, Y., Pei, H., Hu, W., Zhu, Y., Xu, H., Ma, C., Sun, J., & Li, H. (2017b). A promising application of chitosan quaternary ammonium salt to removal of Microcystis aeruginosa cells from drinking water. Science of the Total Environment, 583, 496–504.

    Article  CAS  PubMed  Google Scholar 

  • Jung, J., Baek, J. H., Lee, Y., Jeong, S. E., & Jeon, C. O. (2022a). The self-bleaching process of Microcystis aeruginosa is delayed by a symbiotic bacterium Pseudomonas sp. MAE1-K and promoted by methionine deficiency. Microbiology Spectrum, 10, e0181422.

    Article  PubMed  Google Scholar 

  • Jung, J., Seo, Y. L., Jeong, S. E., Baek, J. H., Park, H. Y., & Jeon, C. O. (2022b). Linear six-carbon sugar alcohols induce lysis of Microcystis aeruginosa NIES-298 cells. Frontiers in Microbiology, 13, 834370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaneko, T., Nakamura, Y., Sato, S., Minamisawa, K., Uchiumi, T., Sasamoto, S., Watanabe, A., Idesawa, K., Iriguchi, M., Kawashima, K., et al. (2002). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Research, 9, 189–197.

    Article  PubMed  Google Scholar 

  • Kang, L., Mucci, M., & Lürling, M. (2022). Compounds to mitigate cyanobacterial blooms affect growth and toxicity of Microcystis aeruginosa. Harmful Algae, 118, 102311.

    Article  CAS  PubMed  Google Scholar 

  • Kapoore, R. V., Padmaperuma, G., Maneein, S., & Vaidyanathan, S. (2022). Co-culturing microbial consortia: Approaches for applications in biomanufacturing and bioprocessing. Critical Reviews in Biotechnology, 42, 46–72.

    Article  CAS  PubMed  Google Scholar 

  • Kibuye, F. A., Zamyadi, A., & Wert, E. C. (2021). A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part II-mechanical and biological control methods. Harmful Algae, 109, 102119.

    Article  PubMed  Google Scholar 

  • Kim, H. G., Cha, Y., & Cho, K. H. (2024). Projected climate change impact on cyanobacterial bloom phenology in temperate rivers based on temperature dependency. Water Research, 249, 120928.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K., Mun, H., Shin, H., Park, S., Yu, C., Lee, J., Yoon, Y., Chung, H., Yun, H., Lee, K., et al. (2020a). Nitrogen stimulates Microcystis-dominated blooms more than phosphorus in river conditions that favor non-nitrogen-fixing genera. Environmental Science & Technology, 54, 7185–7193.

    Article  CAS  Google Scholar 

  • Kim, M., Bae, J., & Park, W. (2022a). Rhizorhabdus phycosphaerae sp. Nov., isolated from the phycosphere of Microcystis aeruginosa. International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijsem.0.005324

    Article  PubMed  Google Scholar 

  • Kim, M., Kim, W., Lee, Y., & Park, W. (2021a). Linkage between bacterial community-mediated hydrogen peroxide detoxification and the growth of Microcystis aeruginosa. Water Research, 207, 117784.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M., Kim, W., & Park, W. (2022b). Aquibium microcysteis gen nov, sp nov, isolated from a Microcystis aeruginosa culture and reclassification of Mesorhizobium carbonis as Aquibium carbonis comb nov and Mesorhizobium oceanicum as Aquibium oceanicum comb nov. International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijsem.0.005230

    Article  PubMed  Google Scholar 

  • Kim, M., Lee, B. H., Lee, K. E., & Park, W. (2021b). Flavobacterium phycosphaerae sp nov isolated from the phycosphere of Microcystis aeruginosa. International Journal of Systematic and Evolutionary Microbiology, 71, 004735.

    Article  CAS  Google Scholar 

  • Kim, M., Lee, J., Yang, D., Park, H. Y., & Park, W. (2020b). Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River. Environmental Pollution, 266, 115198.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M., Shin, B., Lee, J., Park, H. Y., & Park, W. (2019). Culture-independent and culture-dependent analyses of the bacterial community in the phycosphere of cyanobloom-forming Microcystis aeruginosa. Scientific Reports, 9, 20416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, W., Kim, M., Hong, M., & Park, W. (2021c). Killing effect of deinoxanthins on cyanobloom-forming Microcystis aeruginosa: Eco-friendly production and specific activity of deinoxanthins. Environmental Research, 200, 111455.

    Article  CAS  PubMed  Google Scholar 

  • Kim, W., Kim, M., & Park, W. (2021d). Roseococcus microcysteis sp. Nov., isolated from a Microcystis aeruginosa culture sample. International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijsem.0.005185

    Article  PubMed  Google Scholar 

  • Kim, W., Kim, M., & Park, W. (2023). Unlocking the mystery of lysine toxicity on Microcystis aeruginosa. Journal of Hazardous Materials, 448, 130932.

    Article  CAS  PubMed  Google Scholar 

  • Le, V. V., Kang, M., Ko, S. R., Jeong, S., Park, C. Y., Lee, J. J., Choi, I. C., Oh, H. M., & Ahn, C. Y. (2023a). Dynamic response of bacterial communities to Microcystis blooms: A three-year study. Science of the Total Environment, 902, 165888.

    Article  CAS  PubMed  Google Scholar 

  • Le, V. V., Ko, S. R., Kang, M., Lee, S. A., Oh, H. M., & Ahn, C. Y. (2022a). Algicide capacity of Paucibacter aquatile DH15 on Microcystis aeruginosa by attachment and non-attachment effects. Environmental Pollution, 302, 119079.

    Article  CAS  PubMed  Google Scholar 

  • Le, V. V., Ko, S. R., Kang, M., Oh, H. M., & Ahn, C. Y. (2023b). Effective control of harmful Microcystis blooms by paucibactin A, a novel macrocyclic tambjamine, isolated from Paucibacter aquatile DH15. Journal of Cleaner Production, 383, 135408.

    Article  CAS  Google Scholar 

  • Le, V. V., Ko, S. R., Kang, M., Park, C. Y., Lee, S. A., Oh, H. M., & Ahn, C. Y. (2022b). The cyanobactericidal bacterium Paucibacter aquatile DH15 caused the decline of Microcystis and aquatic microbial community succession: A mesocosm study. Environmental Pollution, 311, 119849.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Kim, M., Jeong, S. E., Park, H. Y., Jeon, C. O., & Park, W. (2020). Amentoflavone, a novel cyanobacterial killing agent from Selaginella tamariscina. Journal of Hazardous Materials, 384, 121312.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Jiang, X., Manubolu, M., Riedl, K., Ludsin, S., Martin, J., & Lee, J. (2017). Fresh produce and soils accumulate cyanotoxins from Irrigation: Implications for public health and food security. Food Research International, 102, 234–245.

    Article  CAS  PubMed  Google Scholar 

  • Lehman, P. W., Marr, K., Boyer, G. L., Acuna, S., & Teh, S. J. (2013). Long-term trends and causal factors associated with Microcystis abundance and toxicity in San Francisco Estuary and implications for climate change impacts. Hydrobiologia, 718, 141–158.

    Article  CAS  Google Scholar 

  • Li, D., Kang, X., Chu, L., Wang, Y., Song, X., Zhao, X., & Cao, X. (2021). Algicidal mechanism of Raoultella ornithinolytica against Microcystis aeruginosa: Antioxidant response, photosynthetic system damage and microcystin degradation. Environmental Pollution, 287, 117644.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Zhu, H., Lei, X., Zhang, H., Guan, C., Chen, Z., Zheng, W., Xu, H., Tian, Y., Yu, Z., et al. (2015a). The first evidence of deinoxanthin from Deinococcus sp. Y35 with strong algicidal effect on the toxic dinoflagellate Alexandrium tamarense. Journal of Hazardous Materials, 290, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Geng, M., & Yang, H. (2015b). Algicidal activity of Bacillus sp. Lzh-5 and its algicidal compounds against Microcystis aeruginosa. Applied Microbiology and Biotechnology, 99, 981–990.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Guo, X., Liu, L., Yan, M., Li, J., Hou, S., Wan, J., & Feng, L. (2020). Simultaneous microcystin degradation and Microcystis aeruginosa inhibition with the single enzyme microcystinase A. Environmental Science & Technology, 54, 8811–8820.

    Article  CAS  Google Scholar 

  • Liu, L., Yang, J., Lv, H., Yu, X., Wilkinson, D. M., & Yang, J. (2015). Phytoplankton communities exhibit a stronger response to environmental changes than bacterioplankton in three subtropical reservoirs. Environmental Science & Technology, 49, 10850–10858.

    Article  CAS  Google Scholar 

  • Luo, J., Wang, Y., Tang, S., Liang, J., Lin, W., & Luo, L. (2013). Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PLoS ONE, 8, e76444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lürling, M., & Faassen, E. J. (2012). Controlling toxic cyanobacteria: Effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins. Water Research, 46, 1447–1459.

    Article  PubMed  Google Scholar 

  • Ma, M., Liu, R., Liu, H., Qu, J., & Jefferson, W. (2012). Effects and mechanisms of pre-chlorination on Microcystis aeruginosa removal by alum coagulation: Significance of the released intracellular organic matter. Separation and Purification Technology, 86, 19–25.

    Article  CAS  Google Scholar 

  • Machado, J., Campos, A., Vasconcelos, V., & Freitas, M. (2017). Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health. Environmental Research, 153, 191–204.

    Article  CAS  PubMed  Google Scholar 

  • McIlroy, S. J., Albertsen, M., Andresen, E. K., Saunders, A. M., Kristiansen, R., Stokholm-Bjerregaard, M., Nielsen, K. L., & Nielsen, P. H. (2014). ‘Candidatus Competibacter-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME Journal, 8, 613–624.

    Article  CAS  PubMed  Google Scholar 

  • Mecina, G. F., Chia, M. A., Cordeiro-Araújo, M. K., Bittencourt-Oliveira, M. D. C., Varela, R. M., Torres, A., González Molinillo, J. M., Macías, F. A., & da Silva, R. M. G. (2019). Effect of flavonoids isolated from Tridax procumbens on the growth and toxin production of Microcystis aeruginos. Aquatic Toxicology, 211, 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Metelev, M., Tietz, J. I., Melby, J. O., Blair, P. M., Zhu, L., Livnat, I., Severinov, K., & Mitchell, D. A. (2015). Structure, bioactivity, and resistance mechanism of streptomonomicin, an unusual lasso peptide from an understudied halophilic actinomycete. Chemistry & Biology, 22, 241–250.

    Article  CAS  Google Scholar 

  • Mikalsen, B., Boison, G., Skulberg, O. M., Fastner, J., Davies, W., Gabrielsen, T. M., Rudi, K., & Jakobsen, K. S. (2003). Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. Journal of Bacteriology, 185, 2774–2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffett, J. W., & Zajiriou, O. C. (1990). An investigation of hydrogen peroxide chemistry in surface waters of Vineyard Sound with H218O2 and 18O2. Limnology and Oceanography, 35, 1221–1229.

    Article  CAS  Google Scholar 

  • Nakajima, S., Kojiri, K., & Suda, H. (1993). A new antitumor substance, BE-18591, produced by a streptomycete II. Structure determination. Journal of Antibiotics, 46, 1894–1896.

    Article  CAS  PubMed  Google Scholar 

  • Naknaen, A., Suttinun, O., Surachat, K., Khan, E., & Pomwised, R. (2021). A novel jumbo phage PhiMa05 inhibits harmful Microcystis sp. Frontiers in Microbiology, 12, 660351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nogaro, G., Burgin, A. J., Schoepfer, V. A., Konkler, M. J., Bowman, K. L., & Hammerschmidt, C. R. (2013). Aluminum sulfate (alum) application interactions with coupled metal and nutrient cycling in a hypereutrophic lake ecosystem. Environmental Pollution, 176, 267–274.

    Article  CAS  PubMed  Google Scholar 

  • Noyma, N. P., de Magalhães, L., Furtado, L. L., Mucci, M., van Oosterhout, F., Huszar, V. L., Marinho, M. M., & Lürling, M. (2016). Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculants and phosphorus adsorbing natural soil and modified clay. Water Research, 97, 26–38.

    Article  CAS  PubMed  Google Scholar 

  • Olszewska, M. A., Gędas, A., & Simões, M. (2020). Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry. Food Research International, 134, 109214.

    Article  CAS  PubMed  Google Scholar 

  • Omidi, A., Esterhuizen-Londt, M., & Pflugmacher, S. (2019). Interspecies interactions between Microcystis aeruginosa PCC 7806 and Desmodesmus subspicatus SAG 86.81 in a co-cultivation system at various growth phases. Environment International, 131, 105052.

  • Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: Causes, consequences, and controls. Microbial Ecology, 65, 995–1010.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y., Kim, W., Kim, M., & Park, W. (2023). The β-Lactamase activity at the community level confers β-lactam resistance to bloom-forming Microcystis aeruginosa cells. Journal of Microbiology, 61, 807–820.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Carrascal, O. M., Tromas, N., Terrat, Y., Moreno, E., Giani, A., Corrêa-Braga-Marques, L., Fortin, N., & Shapiro, B. J. (2021). Single-colony sequencing reveals microbe-by-microbiome phylosymbiosis between the cyanobacterium Microcystis and its associated bacteria. Microbiome, 9, 194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Picott, K. J., Deichert, J. A., deKemp, E. M., Schatte, G., Sauriol, F., & Ross, A. C. (2019). Isolation and characterization of tambjamine MYP1, a macrocyclic tambjamine analogue from marine bacterium Pseudoalteromonas citrea. MedChemComm, 10, 478–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redouane, E. M., Tazart, Z., Lahrouni, M., Mugani, R., Elgadi, S., Zine, H., Zerrifi, S. E. A., Haida, M., Martins, J. C., Campos, A., et al. (2023). Health risk assessment of lake water contaminated with microcystins for fruit crop irrigation and farm animal drinking. Environmental Science and Pollution Research International, 30, 80234–80244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweitzer-Natan, O., Ofek-Lalzar, M., Sher, D., & Sukenik, A. (2022). The microbial community spatially varies during a Microcystis bloom event in Lake Kinneret. Freshwater Biology, 68, 394–363.

    Google Scholar 

  • Smith, D. J., Berry, M. A., Cory, R. M., Johengen, T. H., Kling, G. W., Davis, T. W., & Dick, G. J. (2022a). Heterotrophic bacteria dominate catalase expression during Microcystis blooms. Applied and Environmental Microbiology, 88, e02544-e2621.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, D. J., Kharbush, J. J., Kersten, R. D., & Dick, G. J. (2022b). Uptake of phytoplankton-derived carbon and cobalamins by novel Acidobacteria genera in Microcystis blooms inferred from metagenomic and metatranscriptomic evidence. Applied and Environmental Microbiology, 88, e01803-e1821.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, H., Xu, J., Lavoie, M., Fan, X., Liu, G., Sun, L., Fu, Z., & Qian, H. (2017). Biological and chemical factors driving the temporal distribution of cyanobacteria and heterotrophic bacteria in a eutrophic lake (West Lake, China). Applied Microbiology and Biotechnology, 101, 1685–1696.

    Article  CAS  PubMed  Google Scholar 

  • Su, J. F., Ma, M., Wei, L., Ma, F., Lu, J. S., & Shao, S. C. (2016a). Algicidal and denitrification characterization of Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water. Marine Pollution Bulletin, 107, 233–239.

    Article  CAS  PubMed  Google Scholar 

  • Su, J., Shao, S., Huang, T., Ma, F., Zhang, K., Wen, G., & Zheng, S. (2016b). Isolation, identification, and algicidal activity of aerobic denitrifying bacterium R11 and its effect on Microcystis aeruginosa. Water Science and Technology, 73, 2600–2607.

    Article  CAS  PubMed  Google Scholar 

  • Summers, E. J., & Ryder, J. L. (2023). A critical review of operational strategies for the management of harmful algal blooms (HABs) in inland reservoirs. Journal of Environmental Management, 330, 117141.

    Article  PubMed  Google Scholar 

  • Tang, Y. Z., Koch, F., & Gobler, C. J. (2010). Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proceedings of the National Academy of Sciences of the USA, 107, 20756–20761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao, Y., Zhang, X., Au, D. W., Mao, X., & Yuan, K. (2010). The effects of sub-lethal UV-C irradiation on growth and cell integrity of cyanobacteria and green algae. Chemosphere, 78, 541–547.

    Article  CAS  PubMed  Google Scholar 

  • Teikari, J. E., Fewer, D. P., Shrestha, R., Hou, S., Leikoski, N., Mäkelä, M., Simojoki, A., Hess, W. R., & Sivonen, K. (2018). Strains of the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane. ISME Journal, 12, 1619–1630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, L., Chen, M., Ren, C., Wang, Y., & Li, L. (2018). Anticyanobacterial effect of l-lysine on Microcystis aeruginosa. RSC Advances, 8, 21606–21612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tromas, N., Fortin, N., Bedrani, L., Terrat, Y., Cardoso, P., Bird, D., Greer, C. W., & Shapiro, B. J. (2017). Characterising and predicting cyanobacterial blooms in an 8-year amplicon sequencing time course. ISME Journal, 11, 1746–1763.

    Article  PubMed  PubMed Central  Google Scholar 

  • Volk, A., & Lee, J. (2023). Cyanobacterial blooms: A player in the freshwater environmental resistome with public health relevance? Environmental Research., 216, 114612.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Wang, C., Li, Q., Shen, M., Bai, P., Li, J., Lin, Y., Gan, N., Li, T., & Zhao, J. (2019). Microcystin-LR degradation and gene regulation of microcystin-degrading Novosphingobium sp THN1 at different carbon concentrations. Frontiers in Microbiology, 10, 1750.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, L., Fu, J., He, L., Wang, H., Ruan, J., Li, F., & Wu, H. (2023). Microcystin-LR-induced autophagy regulates oxidative stress, inflammation, and apoptosis in grass carp ovary cells in vitro. Toxicology in Vitro, 87, 105520.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., Wu, H., Chen, J., & Ye, J. (2013). Effects of allelochemical extracted from water lettuce (Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa. Environmental Science and Pollution Research, 20, 8192–8201.

    Article  CAS  PubMed  Google Scholar 

  • **ang, L., Li, Y. W., Liu, B. L., Zhao, H. M., Li, H., Cai, Q. Y., Mo, C. H., Wong, M. H., & Li, Q. X. (2019). High ecological and human health risks from microcystins in vegetable fields in southern China. Environment International, 133, 105142.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Q., Steinman, A. D., **e, L., Yao, L., Su, X., Cao, Q., Zhao, Y., & Cai, Y. (2020). Seasonal variation and potential risk assessment of microcystins in the sediments of Lake Taihu China. Environmental Pollution, 259, 113884.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Q., **e, L., Yang, J. R., Yang, J., & Su, X. (2024). The prevalence and persistence of microcystin in seven subtropical reservoirs in China and associated potential risks for human health. Environmental Technology & Innovation, 33, 103476.

    Article  CAS  Google Scholar 

  • Yan, G., Fu, L., Ming, H., Chen, C., & Zhou, D. (2023). Exploring an efficient and eco-friendly signaling molecule and its quorum quenching ability for controlling Microcystis blooms. Environmental Science & Technology, 57, 16929–16939.

    Article  CAS  Google Scholar 

  • Yan, R., Ji, H., Wu, Y., Kerr, P. G., Fang, Y., & Yang, L. (2012). An investigation into the kinetics and mechanism of the removal of cyanobacteria by extract of Ephedra equisetina root. PLoS ONE, 7, e42285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, X., Zhao, F., Wang, G., Wang, Z., Zhou, M., Zhang, L., Wang, G., & Chen, Y. (2022). Metabolomic analysis of Microcystis aeruginosa after exposure to the algicide l-lysine. Bulletin of Environmental Contamination and Toxicology, 110, 12.

    Article  PubMed  Google Scholar 

  • Yang, C., Wang, Q., Simon, P. N., Liu, J., Liu, L., Dai, X., Zhang, X., Kuang, J., Igarashi, Y., Pan, X., & Luo, F. (2017a). Distinct network interactions in particle-associated and free-living bacterial communities during a Microcystis aeruginosa bloom in a Plateau Lake. Frontiers in Microbiology, 8, 1202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, F., Li, X., Li, Y., Wei, H., Yu, G., Yin, L., Liang, G., & Pu, Y. (2013a). Lysing activity of an indigenous algicidal bacterium Aeromonas sp. against Microcystis spp. isolated from Lake Taihu. Environmental Technology, 34, 1421–1427.

    Article  CAS  PubMed  Google Scholar 

  • Yang, K., Chen, Q., Zhang, D., Zhang, H., Lei, X., Chen, Z., Li, Y., Hong, Y., Ma, X., Zheng, W., et al. (2017b). The algicidal mechanism of prodigiosin from Hahella sp KA22 against Microcystis aeruginosa. Scientific Reports, 7, 7750.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, X., **e, P., Ma, Z., Wang, Q., Fan, H., & Shen, H. (2013b). Decrease of NH4+-N by bacterioplankton accelerated the removal of cyanobacterial blooms in aerated aquatic ecosystem. Journal of Environmental Sciences, 25, 2223–2228.

    Article  CAS  Google Scholar 

  • Yi, Y. L., Yu, X. B., Zhang, C., & Wang, G. X. (2015). Growth inhibition and microcystin degradation effects of Acinetobacter guillouiae A2 on Microcystis aeruginosa. Research in Microbiology, 166, 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Yilimulati, M., Zhou, L., Shevela, D., & Zhang, S. (2022). Acetylacetone interferes with carbon and nitrogen metabolism of Microcystis aeruginosa by cutting off the electron flow to ferredoxin. Environmental Science & Technology, 56, 9683–9692.

    Article  CAS  Google Scholar 

  • Yu, H., Lei, P., Ma, J., **, J., Ma, Y., Fang, Y., Zeng, G., Zhang, K., **, L., & Sun, D. (2023). The potential of white-rot fungi for algal control: Mechanisms, strategies, and challenges. Environmental Research, 236, 116738.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S., Liu, Y., Zhang, J., & Gao, B. (2019). Influence of mixed antibiotics on Microcystis aeruginosa during the application of glyphosate and hydrogen peroxide algaecides. Journal of Phycology, 55, 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, Y. H., Cai, Z. H., Cheng, K. K., & Zhou, J. (2022). Naturally occurring lasso peptides as algicidal agents against Microcystis aeruginosa. Journal of Cleaner Production, 381, 135136.

    Article  CAS  Google Scholar 

  • Zeng, Y. H., Cai, Z. H., Zhu, J. M., Du, X. P., & Zhou, J. (2020). Two hierarchical LuxR-LuxI type quorum sensing systems in Novosphingobium activate microcystin degradation through transcriptional regulation of the mlr pathway. Water Research, 183, 116092.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, Y., Wang, J., Yang, C., Ding, M., Hamilton, P. B., Zhang, X., Yang, C., Zhnag, L., & Dai, X. (2021). A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact. Science of the Total Environment, 769, 144489.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B. H., Ding, Z. G., Li, H. Q., Mou, X. Z., Zhang, Y. Q., Yang, J. Y., Zhou, E. M., & Li, W. J. (2016). Algicidal activity of Streptomyces eurocidicus JXJ-0089 metabolites and their effects on Microcystis physiology. Applied and Environmental Microbiology, 82, 5132–5143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Meng, G., Mao, F., Li, W., He, Y., Gin, K. Y., & Ong, C. N. (2019a). Use of an integrated metabolomics platform for mechanistic investigations of three commonly used algaecides on cyanobacterium, Microcystis aeruginosa. Journal of Hazardous Materials, 367, 120–127.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. L., Zhou, Z. P., Pei, Y., **ang, Q. Q., Chang, X. X., Ling, J., Shea, D., & Chen, L. Q. (2018). Metabolic profiling of silver nanoparticle toxicity in Microcystis aeruginosa. Environmental Science: Nano, 5, 2519–2530.

    CAS  Google Scholar 

  • Zhang, K., Gu, Y., Cheng, C., Xue, Q., & **e, L. (2024). Changes in microcystin concentration in Lake Taihu, 13 years (2007–2020) after the 2007 drinking water crisis. Environmental Research, 241, 117597.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Ge, F., Zhang, S., Li, X., Peng, X., Zhang, X., Zhou, Q., Wu, Z., & Liu, B. (2022). Potential effects of Cladophora oligoclora decomposition: Microhabitat variation and Microcystis aeruginosa growth response. Ecotoxicology and Environmental Safety, 247, 114236.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Lu, T., Paerl, H. W., Chen, Y., Zhang, Z., Zhou, Z., & Qian, H. (2019b). Feedback regulation between aquatic microorganisms and the bloom-forming cyanobacterium Microcystis aeruginosa. Applied and Environmental Microbiology, 85, e01362-e1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Chen, Y., Wang, M., Zhang, J., Chen, Q., & Liu, D. (2021). Molecular responses to inorganic and organic phosphorus sources in the growth and toxin formation of Microcystis aeruginosa. Water Research, 196, 117048.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z., Li, C., Jiang, L., Wu, D., Shi, H., **ao, G., Guan, Y., & Kang, X. (2022). Occurrence and distribution of antibiotic resistant bacteria and genes in the Fuhe urban river and its driving mechanism. Science of the Total Environment, 825, 153950.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1F1A1063757).

Author information

Authors and Affiliations

Authors

Contributions

W.K., Y.P., M.T., J.L., and W.P. conducted the data collection for the manuscript and substantially contributed to the determination of the content. W.K., C.O.J., M.T., J.L., and W.P. collaborated on categorizing the data. W.K., Y.P., J.J., J.L., and W.P. wrote the manuscript, and W.P. reviewed and edited it.

Corresponding author

Correspondence to Woojun Park.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Park, Y., Jung, J. et al. Biological and Chemical Approaches for Controlling Harmful Microcystis Blooms. J Microbiol. 62, 249–260 (2024). https://doi.org/10.1007/s12275-024-00115-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-024-00115-2

Keywords

Navigation