Log in

NEDD4 Regulated Pyroptosis Occurred from Co-infection between Influenza A Virus and Streptococcus pneumoniae

  • Virology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Co-infection of respiratory tract viruses and bacteria often result in excess mortality, especially pneumonia caused by influenza viruses and Streptococcus pneumoniae. However, the synergistic mechanisms remain poorly understood. Therefore, it is necessary to develop a clearer understanding of the molecular basis of the interaction between influenza virus and Streptococcus pneumonia. Here, we developed the BALB/c mouse model and the A549 cell model to investigate inflammation and pyroptotic cell death during co-infection. Co-infection significantly activated the NLRP3 inflammasome and induced pyroptotic cell death, correlated with excess mortality. The E3 ubiquitin ligase NEDD4 interacted with both NLRP3 and GSDMD, the executor of pyroptosis. NEDD4 negatively regulated NLRP3 while positively regulating GSDMD, thereby modulating inflammation and pyroptotic cell death. Our findings suggest that NEDD4 may play a crucial role in regulating the GSDMD-mediated pyroptosis signaling pathway. Targeting NEDD4 represents a promising approach to mitigate excess mortality during influenza pandemics by suppressing synergistic inflammation during co-infection of influenza A virus and Streptococcus pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  • Abramson, J. S., Mills, E. L., Giebink, G. S., & Quie, P. G. (1982). Depression of monocyte and polymorphonuclear leukocyte oxidative metabolism and bactericidal capacity by influenza A virus. Infection and Immunity, 35, 350–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aebi, T., Weisser, M., Bucher, E., Hirsch, H. H., Marsch, S., & Siegemund, M. (2010). Co-infection of influenza B and Streptococci causing severe pneumonia and septic shock in healthy women. BMC Infectious Diseases, 10, 308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alymova, I. V., Portner, A., Takimoto, T., Boyd, K. L., Babu, Y. S., & McCullers, J. A. (2005). The novel parainfluenza virus hemagglutinin-neuraminidase inhibitor BCX 2798 prevents lethal synergism between a paramyxovirus and Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 49, 398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambigapathy, G., Schmit, T., Mathur, R. K., Nookala, S., Bahri, S., Pirofski, L. A., & Khan, M. N. (2019). Double-edged role of interleukin 17A in Streptococcus pneumoniae pathogenesis during influenza virus coinfection. The Journal of Infectious Diseases, 220, 902–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An, C., Wu, Y., Wu, J., Liu, H., Zhou, S., Ge, D., Dong, R., You, L., & Hao, Y. (2022). Berberine ameliorates pulmonary inflammation in mice with influenza viral pneumonia by inhibiting NLRP3 inflammasome activation and gasdermin D-mediated pyroptosis. Drug Development Research, 83, 1707–1721.

    Article  CAS  PubMed  Google Scholar 

  • Anand, P. K., Malireddi, R. S., & Kanneganti, T. D. (2011). Role of the Nlrp3 inflammasome in microbial infection. Frontiers in Microbiology, 2, 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrewes, C. H., Laidlaw, P. P., & Smith, W. (1935). Influenza: Observations on the recovery of virus from man and on the antibody content of human sera. British Journal of Experimental Pathology, 16, 566–582.

    PubMed Central  Google Scholar 

  • Bao, L., Zhang, C., Dong, J., Zhao, L., Li, Y., & Sun, J. (2020). Oral microbiome and SARS-CoV-2: Beware of lung co-infection. Frontiers in Microbiology, 11, 1840.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barman, T. K., Singh, A. K., Bonin, J. L., Nafiz, T. N., Salmon, S. L., & Metzger, D. W. (2022). Lethal synergy between SARS-CoV-2 and Streptococcus pneumoniae in hACE2 mice and protective efficacy of vaccination. The Journal of Clinical Investigation Insight, 7, e159422.

    PubMed  Google Scholar 

  • Brown, K. M., Sage, V. L., French, A. J., Jones, J. E., Padovani, G. H., Avery, A. J., Myerburg, M. M., Schultz-Cherry, S., Rosch, J. W., Hiller, N. L., & Lakdawala, S. S. (2020). Coinfection of Streptococcus pneumoniae reduces airborne transmission of influenza virus. bioRxiv, 10, 376442.

    Google Scholar 

  • Brown, K. M., Sage, V. L., French, A. J., Jones, J. E., Padovani, G. H., Avery, A. J., Schultz-Cherry, S., Rosch, J. W., Hiller, N. L., & Lakdawala, S. S. (2022). Secondary infection with Streptococcus pneumoniae decreases influenza virus replication and is linked to severe disease. FEMS Microbes, 3, xtac007.

    Article  Google Scholar 

  • Chen, Y. Y., Huang, C. T., Li, S. W., Pan, Y. J., Lin, T. L., & Huang, Y. Y. (2021). Bacterial factors required for Streptococcus pneumoniae coinfection with influenza A virus. Journal of Biomedical Science, 28, 60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, T., **ao, J., Li, L., Xu, W., Yuan, Y., Yin, Y., & Zhang, X. (2022). rM2e-ΔPly protein immunization induces protection against influenza viruses and its co-infection with Streptococcus pneumoniae in mice. Molecular Immunology, 152, 86–96.

    Article  CAS  PubMed  Google Scholar 

  • Habibzay, M., Weiss, G., & Hussell, T. (2013). Bacterial superinfection following lung inflammatory disorders. Future Microbiology, 8, 247–256.

    Article  CAS  PubMed  Google Scholar 

  • Han, X., Li, Z., Chen, H., Wang, H., Mei, L., Wu, S., Zhang, T., Liu, B., & Lin, X. (2012). Influenza virus A/Bei**g/501/2009 (H1N1) NS1 interacts with β-tubulin and induces disruption of the microtubule network and apoptosis on A549 cells. PLoS ONE, 7, e48340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, T., Wang, H., Fan, X., An, N., Li, J., Song, H., Kong, E., Li, Y., & Yuan, H. (2022). BRD4 inhibition attenuates inflammatory pain by ameliorating NLRP3 inflammasome-induced pyroptosis. Frontiers in Immunology, 13, 837977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichinohe, T., Pang, I. K., Kumamoto, Y., Peaper, D. R., Ho, J. H., Murray, T. S., & Iwasaki, A. (2011). Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proceedings of the National Academy of Sciences, 108, 5354–5359.

    Article  CAS  Google Scholar 

  • Jochems, S. P., Marcon, F., Carniel, B. F., Holloway, M., Mitsi, E., Smith, E., Gritzfeld, J. F., Solórzano, C., Reiné, J., Pojar, S., et al. (2018). Inflammation induced by influenza virus impairs human innate immune control of pneumococcus. Nature Immunology, 19, 1299–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julkunen, I., Melén, K., Nyqvist, M., Pirhonen, J., Sareneva, T., & Matikainen, S. (2000). Inflammatory responses in influenza A virus infection. Vaccine, 19, S32–S37.

    Article  CAS  PubMed  Google Scholar 

  • Ketelut-Carneiro, N., & Fitzgerald, K. A. (2022). Apoptosis, pyroptosis, and necroptosis—Oh my! The many ways a cell can die. Journal of Molecular Biology, 434, 167378.

    Article  CAS  PubMed  Google Scholar 

  • LeMessurier, K. S., Iverson, A. R., Chang, T. C., Palipane, M., Vogel, P., Rosch, J. W., & Samarasinghe, A. E. (2019). Allergic inflammation alters the lung microbiome and hinders synergistic co-infection with H1N1 influenza virus and Streptococcus pneumoniae in C57BL/6 mice. Scientific Reports, 9, 19360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, T., Zhou, X., Qin, M., Lin, Y., Lin, J., Chen, G., Liu, A., Ouyang, D., Chen, D., & Pan, H. (2022). Corilagin restrains NLRP3 inflammasome activation and pyroptosis through the ROS/TXNIP/NLRP3 pathway to prevent inflammation. Oxidative Medicine and Cellular Longevity, 1155, 1652244.

    Google Scholar 

  • McCullers, J. A. (2006). Insights into the interaction between influenza virus and pneumococcus. Clinical Microbiology Reviews, 19, 571–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCullers, J. A., & Rehg, J. E. (2002). Lethal synergism between influenza virus and Streptococcus pneumoniae: Characterization of a mouse model and the role of platelet-activating factor receptor. The Journal of Infectious Diseases, 186, 341–350.

    Article  CAS  PubMed  Google Scholar 

  • McHugh, K. J., Mandalapu, S., Kolls, J. K., Ross, T. M., & Alcorn, J. F. (2013). A novel outbred mouse model of 2009 pandemic influenza and bacterial co-infection severity. PLoS ONE, 8, e82865.

    Article  PubMed  PubMed Central  Google Scholar 

  • Menu, P., & Vince, J. E. (2011). The NLRP3 inflammasome in health and disease: The good, the bad and the ugly. Clinical & Experimental Immunology, 166, 1–15.

    Article  CAS  Google Scholar 

  • Negash, A. A., Ramos, H. J., Crochet, N., Lau, D. T., Doehle, B., Papic, N., Delker, D. A., Jo, J., Bertoletti, A., Hagedorn, C. H., & Gale, M., Jr. (2013). IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathogens, 9, e1003330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peeters, P. M., Perkins, T. N., Wouters, E. F., Mossman, B. T., & Reynaert, N. L. (2013). Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Particle and Fibre Toxicology, 10, 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piamsiri, C., Maneechote, C., **awong, K., Arunsak, B., Chunchai, T., Nawara, W., Chattipakorn, S. C., & Chattipakorn, N. (2023). GSDMD-mediated pyroptosis dominantly promotes left ventricular remodeling and dysfunction in post-myocardial infarction: A comparison across modes of programmed cell death and mitochondrial involvement. Journal of Translational Medicine, 21, 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, S., Salmon, S. L., Steiner, D. J., Williams, C. M., Metzger, D. W., & Furuya, Y. (2019). Allergic airway disease prevents lethal synergy of influenza A virus—Streptococcus pneumoniae coinfection. Mbio, 10, e01335-e1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Nava, G., Yanez-Bello, M. A., Trelles-Garcia, D. P., Chung, C. W., Egoryan, G., & Friedman, H. J. (2020). A retrospective study of coinfection of SARS-CoV-2 and Streptococcus pneumoniae in 11 hospitalized patients with severe COVID-19 pneumonia at a single center. Medical Science Monitor, 26, e928754–e928761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe, S. L., Leder, K., Sundaresan, L., Wollersheim, D., Lawrie, J., & Stephens, N. (2023). Excess mortality among people with communicable diseases over a 30-year period, Victoria, Australia: a whole of population cohort study. The Lancet Regional Health–Western Pacific, 100815.

  • Russier, M., Yang, G., Briard, B., Meliopoulos, V., Cherry, S., & Kanneganti, T. D. (2020). Hemagglutinin stability regulates H1N1 influenza virus replication and pathogenicity in mice by modulating type I interferon responses in dendritic cells. Journal of Virology, 94, e01423-e1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmeck, B., Gross, R., N’Guessan, P. D., Hocke, A. C., Hammerschmidt, S., Mitchell, T. J., Rosseau, S., Suttorp, N., & Hippenstiel, S. (2004). Streptococcus pneumoniae-induced caspase 6-dependent apoptosis in lung epithelium. Infection and Immunity, 72, 4940–4947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmeck, B., Moog, K., Zahlten, J., van Laak, V., N’Guessan, P. D., Opitz, B., Rosseau, S., Suttorp, N., & Hippenstiel, S. (2006). Streptococcus pneumoniae induced c-Jun-N-terminal kinase-and AP-1-dependent IL-8 release by lung epithelial BEAS-2B cells. Respiratory Research, 7, 98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwab, N., Nienhold, R., Henkel, M., Baschong, A., Graber, A., Frank, A., Mensah, N., Koike, J., Hernach, C., Sachs, M., et al. (2022). COVID-19 autopsies reveal underreporting of SARS-CoV-2 infection and scarcity of co-infections. Frontiers in Medicine, 9, 868954.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sender, V., Hentrich, K., & Henriques-Normark, B. (2021). Virus-induced changes of the respiratory tract environment promote secondary infections with Streptococcus pneumoniae. Frontiers in Cellular and Infection Microbiology, 11, 643326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ünal, S., Schnitzler, P., Giesen, N., Wedde, M., Dürrwald, R., & Tabatabai, J. (2023). Molecular epidemiology and disease severity of influenza virus infection in patients with haematological disorders. Journal of Medical Virology, 95, e28835.

    Article  PubMed  Google Scholar 

  • Verdonck, S., Nemegeer, J., Vandenabeele, P., & Maelfait, J. (2022). Viral manipulation of host cell necroptosis and pyroptosis. Trends in Microbiology, 30, 593–605.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Yuan, J., Wang, H., Gan, N., Zhang, Q., Liu, B., Wang, J., Shu, Z., Rao, L., Gou, X., et al. (2019). Progranulin decreases susceptibility to Streptococcus pneumoniae in influenza and protects against lethal coinfection. The Journal of Immunology, 203, 2171–2182.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, W. J., & Steer, P. (1919). Bacteriological and pathological observations on influenza as seen in France during 1918. British Medical Journal, 1, 634–635.

    Article  PubMed Central  Google Scholar 

  • Xu, T., Yu, W., Fang, H., Wang, Z., Chi, Z., Guo, X., Jiang, D., Zhang, K., Chen, S., Li, M., et al. (2022). Ubiquitination of NLRP3 by gp78/Insig-1 restrains NLRP3 inflammasome activation. Cell Death & Differentiation, 29, 1582–1595.

    Article  CAS  Google Scholar 

  • Yu, Q., Shi, H., Ding, Z., Wang, Z., Yao, H., & Lin, R. (2023). The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation in Helicobacter pylori-associated gastritis by regulating ROS and autophagy. Cell Communication and Signaling, 21, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Shang, L., Zhang, Q., Hu, X., Huang, J. F., & **ong, K. (2023). DTX3L induced NLRP3 ubiquitination inhibit R28 cell pyroptosis in OGD/R injury. Biochimica Et Biophysica Acta Molecular Cell Research, 1870, 119433.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the open foundation of the State Key Laboratory of Oral Diseases (Grant no. SKLOD2015OF08). We thank Prof. Yan Li and Dr. Wei Wei for the manuscript revision from West China Hospital of Stomatology, Sichuan University. We thank Prof. Tao Luo from the Department of Pathogenic Biology of the West China School of Basic Medical Sciences & Forensic Medicine of Sichuan University. We thank Prof. Qiang Fu and Prof. **ghu Zhang from the Public Platform of the West China School of Basic Medical Sciences & Forensic Medicine of Sichuan University. We thank the Department of Pathogenic Biology of the West China School of Basic Medical Sciences & Forensic Medicine of Sichuan University, and the Public Platform of the West China School of Basic Medical Sciences & Forensic Medicine of Sichuan University for providing core facility assistance. At the same time, we thank Dr. Zhen Qin from the Department of Pathogenic Biology of the West China School of Basic Medical Sciences & Forensic Medicine of Sichuan University, Prof. Zairong Zhang from the Department of Pathogenic Biology of the West China School of Basic Medical Sciences & Forensic Medicine of Sichuan University, Dr. Laibin Ren from the Department of Pathophysiology, and Prof. Yang Qin and Prof. **ufeng Gao from the Department of Biochemistry for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyuan Li or Baoning Wang.

Ethics declarations

Conflict of Interest

The authors declare that the research had no relationship with any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical Statements

The animal study was reviewed and approved by the Medical Ethics Committee of Sichuan University (WCHSIRB-D-2022–624).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 255 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J., Zhou, L., San, X. et al. NEDD4 Regulated Pyroptosis Occurred from Co-infection between Influenza A Virus and Streptococcus pneumoniae. J Microbiol. 61, 777–789 (2023). https://doi.org/10.1007/s12275-023-00076-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00076-y

Keywords

Navigation