Log in

Regulation of iron homeostasis by peroxide-sensitive CatR, a Fur-family regulator in Streptomyces coelicolor

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

CatR, a peroxide-sensing transcriptional repressor of Fur family, can de-repress the transcription of the catA gene encoding catalase upon peroxide stress in Streptomyces coelicolor. Since CatR-regulated genes other than catA and its own gene catR have not been identified in detail, the understanding of the role of CatR regulon is very limited. In this study, we performed transcriptomic analysis to identify genes influenced by both ΔcatR mutation and hydrogen peroxide treatment. Through ChIP-qPCR and other analyses, a new consensus sequence was found in CatR-responsive promoter region of catR gene and catA operon for direct regulation. In addition, vtlA (SCO2027) and SCO4983 were identified as new members of the CatR regulon. Expression levels of iron uptake genes were reduced by hydrogen peroxide and a DmdR1 binding sequence was identified in promoters of these genes. The increase in free iron by hydrogen peroxide was thought to suppress the iron import system by DmdR1. A putative exporter protein VtlA regulated by CatR appeared to reduce intracellular iron to prevent oxidative stress. The name vtlA (VIT1-like transporter) was proposed for iron homeostasis related gene SCO2027.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, S.C. 2010. The Ferritin-like superfamily: evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim. Biophys. Acta 1800, 691–705.

    Article  CAS  PubMed  Google Scholar 

  • Arosio, P., Elia, L., and Poli, M. 2017. Ferritin, cellular iron storage and regulation. IUBMB Life 69, 414–422.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, T.L., Johnson, J., Grant, C.E., and Noble, W.S. 2015. The MEME suite. Nucleic Acids Res. 43, W39–W49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhubhanil, S., Chamsing, J., Sittipo, P., Chaoprasid, P., Sukchawalit, R., and Mongkolsuk, S. 2014. Roles of agrobacterium tumefaciens membrane-bound ferritin (MbfA) in iron transport and resistance to iron under acidic conditions. Microbiology 160, 863–871.

    Article  CAS  PubMed  Google Scholar 

  • Bolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Y., Yang, R., Lyu, M., Wang, S., Liu, X., Wen, Y., Song, Y., Li, J., and Chen, Z. 2018. Ider, a dtxr family iron response regulator, controls iron homeostasis, morphological differentiation, secondary metabolism, and the oxidative stress response in Streptomyces avermitilis. Appl. Environ. Microbiol. 84, e01503–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, Y.H. and Roe, J.H. 1997. Isolation and expression of the catA gene encoding the major vegetative catalase in Streptomyces coelicolor Müller. J. Bacteriol. 179, 4049–4052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, S.H., Lee, K.L., Shin, J.H., Cho, Y.B., Cha, S.S., and Roe, J.H. 2017. Zinc-dependent regulation of zinc import and export genes by zur. Nat. Commun. 8, 15812.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelis, P., Wei, Q., Andrews, S.C., and Vinckx, T. 2011. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 3, 540–549.

    Article  PubMed  Google Scholar 

  • Dubbs, J.M. and Mongkolsuk, S. 2012. Peroxide-sensing transcriptional regulators in bacteria. J. Bacteriol. 194, 5495–5503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores, F.J. and Martín, J.F. 2004. Iron-regulatory proteins Dmdr1 and Dmdr2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochem. J. 380, 497–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuangthong, M. and Helmann, J.D. 2003. Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. J. Bacteriol. 185, 6348–6357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gust, B., Challis, G.L., Fowler, K., Kieser, T., and Chater, K.F. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100, 1541–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, J.S., Oh, S.Y., Chater, K.F., Cho, Y.H., and Roe, J.H. 2000. H2O2-sensitive fur-like repressor CatR regulating the major catalase gene in Streptomyces coelicolor. J. Biol. Chem. 275, 38254–38260.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, J.S., Oh, S.Y., and Roe, J.H. 2002. Role of OxyR as a peroxide-sensing positive regulator in Streptomyces coelicolor A3(2). J. Bacteriol. 184, 5214–5222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbig, A.F. and Helmann, J.D. 2001. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol. Microbiol. 41, 849–859.

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J., et al. 2019. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314.

    Article  CAS  PubMed  Google Scholar 

  • Imlay, J.A. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395–418.

    Article  CAS  PubMed  Google Scholar 

  • Imlay, J.A. 2013. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong, Y., Kim, J.N., Kim, M.W., Bucca, G., Cho, S., Yoon, Y.J., Kim, B.G., Roe, J.H., Kim, S.C., Smith, C.P., et al. 2016. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat. Commun. 7, 11605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. 2000. Practical Streptomyces Genetics. John Innes Centre, Norwich, England.

    Google Scholar 

  • Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L. 2001. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labbé, S., Khan, M.G.M., and Jacques, J.F. 2013. Iron uptake and regulation in Schizosaccharomyces pombe. Curr. Opin. Microbiol. 16, 669–676.

    Article  PubMed  Google Scholar 

  • Langmead, B. and Salzberg, S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.W. and Helmann, J.D. 2006. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440, 363–367.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C., Lee, S.M., Mukhopadhyay, P., Kim, S.J., Lee, S.C., Ahn, W.S., Yu, M.H., Storz, G., and Ryu, S.E. 2004a. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. 11, 1179–1185.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.H., Yeo, W.S., and Roe, J.H. 2004b. Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: Involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol. Microbiol. 51, 1745–1755.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K.C., Yeo, W.S., and Roe, J.H. 2008. Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J. Bacteriol. 190, 8244–8247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K.L., Yoo, J.S., Oh, G.S., Singh, A.K., and Roe, J.H. 2017. Simultaneous activation of iron- and thiol-based sensor-regulator systems by redox-active compounds. Front. Microbiol. 8, 139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, L., Chen, O.S., McVey Ward, D., and Kaplan, J. 2001. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J. Biol. Chem. 276, 29515–29519.

    Article  CAS  PubMed  Google Scholar 

  • Liao, Y., Smyth, G.K., and Shi, W. 2013. The subread aligner: fast, accurate and scalable read map** by seed-and-vote. Nucleic Acids Res. 41, e108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Bauer, S.C., and Imlay, J.A. 2011. The YaaA protein of the Escherichia coli OxyR regulon lessens hydrogen peroxide toxicity by diminishing the amount of intracellular unincorporated iron. J. Bacteriol. 193, 2186–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Sun, M., Cheng, Y., Yang, R., Wen, Y., Chen, Z., and Li, J. 2016. OxyR is a key regulator in response to oxidative stress in Streptomyces avermitilis. Microbiology 162, 707–716.

    Article  CAS  PubMed  Google Scholar 

  • Love, M.I., Huber, W., and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DEseq2. Genome Biol. 15, 550.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra, S. and Imlay, J. 2012. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys. 525, 145–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myronovskyi, M., Welle, E., Fedorenko, V., and Luzhetskyy, A. 2011. β-Glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl. Environ. Microbiol. 77, 5370–5383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi, H. and Helmann, J.D. 2017. Ferrous iron efflux systems in bacteria. Metallomics 9, 840–851.

    Article  CAS  PubMed  Google Scholar 

  • Pouliot, B., Jbel, M., Mercier, A., and Labbé, S. 2010. abc3 + encodes an iron-regulated vacuolar ABC-type transporter in Schizosaccharomyces pombe. Eukaryot. Cell 9, 59–73.

    Article  CAS  PubMed  Google Scholar 

  • Ruangkiattikul, N., Bhubhanil, S., Chamsing, J., Niamyim, P., Sukchawalit, R., and Mongkolsuk, S. 2012. Agrobacterium tumefaciens membrane-bound ferritin plays a role in protection against hydrogen peroxide toxicity and is negatively regulated by the iron response regulator. FEMS Microbiol. Lett. 329, 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Sorribes-Dauden, R., Peris, D., Martínez-Pastor, M.T., and Puig, S. 2020. Structure and function of the vacuolar Ccc1/VIT1 family of iron transporters and its regulation in fungi. Comput. Struct. Biotechnol. J. 18, 3712–3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanderWal, A.R., Makthal, N., Pinochet-Barros, A., Helmann, J.D., Olsen, R.J., and Kumaraswami, M. 2017. Iron efflux by PmtA is critical for oxidative stress resistance and contributes significantly to Group A Streptococcus virulence. Infect. Immun. 85, e00091–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, M., Aslund, F., and Storz, G. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, M., Doan, B., Schneider, T.D., and Storz, G. 1999. OxyR and SoxRS regulation of fur. J. Bacteriol. 181, 4639–4643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, M., Wang, X., Templeton, L.J., Smulski, D.R., LaRossa, R.A., and Storz, G. 2001. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 183, 4562–4570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (2018R1D1A1B0704-6585 to K.-L.L and 2020R1I1A1A01052942 to Y.-J.C) of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea. This work was also supported by a grant (2017R1A2A1A05000735 to J.-H.R.) of the NRF funded by the Ministry of Education, Science, and Technology (MEST), Republic of Korea. Y.K. was supported by B.K. Plus Fellowship for Biological Sciences at Seoul National University.

Author information

Authors and Affiliations

Authors

Contributions

YK and KL design the experiments. YK performed the experiments. YK, YC, KL, and JR analyzed and interpreted the data. YK, YC, JP, KL, and JR prepared the manuscript. YK, YC and KL wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yong-Joon Cho or Kang-Lok Lee.

Ethics declarations

This research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Roe, JH., Park, JH. et al. Regulation of iron homeostasis by peroxide-sensitive CatR, a Fur-family regulator in Streptomyces coelicolor. J Microbiol. 59, 1083–1091 (2021). https://doi.org/10.1007/s12275-021-1457-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1457-1

Keywords

Navigation