Log in

Oral delivery of ferroptosis inducers for effective treatment of hepatic fibrosis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Liver fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM), which is primarily produced by activated hepatic stellate cells (HSCs). However, effective therapies for hepatic fibrosis are currently lacking. Artesunate is a promising anti-fibrotic drug candidate, but its clinical application is hindered by limited absorption. Here, we present a novel oral delivery platform that enhances the HSCs uptake of artesunate and induces potent ferroptosis. The platform is vitamin A-decorated nanoparticles encapsulated with artesunate. The multifunctional ligand vitamin A interacts with retinol-binding proteins that are highly expressed on the intestinal epithelium to promote transcytosis, highly expressed on the surface of HSCs but lowly expressed in normal hepatocytes. After oral administration, this oral delivery platform enhances transepithelial transport in the intestine, improves drug accumulation in the liver, and continuously increases HSCs uptake of artesunate. Upon drug release in HSCs, artesunate depletes glutathione peroxidase 4 and glutathione, effectively initiating ferroptosis. In vivo experiments demonstrate that this strategy induces pronounced ferroptosis, efficiently relieving liver fibrosis. This work provides a proof-of-concept demonstration that an oral delivery strategy for ferroptosis inducers may be beneficial for liver fibrosis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fallowfield, J. A.; Ramachandran, P. A relaxin-based nanotherapy for liver fibrosis. Nat. Nanotechnol. 2021, 16, 365–366.

    Article  CAS  PubMed  Google Scholar 

  2. Koyama, Y.; Brenner, D. A. Liver inflammation and fibrosis. J. Clin. Invest. 2017, 127, 55–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee, Y. A.; Wallace, M. C.; Friedman, S. L. Pathobiology of liver fibrosis: A translational success story. Gut 2015, 64, 830–841.

    Article  CAS  PubMed  Google Scholar 

  4. Pellicoro, A.; Ramachandran, P.; Iredale, J. P.; Fallowfield, J. A. Liver fibrosis and repair: Immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 2014, 14, 181–194.

    Article  CAS  PubMed  Google Scholar 

  5. **, Y.; Li, Y. P.; Xu, P. F.; Li, S. H.; Liu, Z. S.; Tung, H. C.; Cai, X. R.; Wang, J. Y.; Huang, H. Z.; Wang, M. L. et al. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Sci. Adv. 2021, 7, eabg9241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gamboa, J. M.; Leong, K. W. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Delivery Rev. 2013, 65, 800–810

    Article  CAS  Google Scholar 

  7. Luo, J. W.; Zhang, P.; Zhao, T.; Jia, M. D.; Yin, P.; Li, W. H.; Zhang, Z. R.; Fu, Y.; Gong, T. Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis. ACS Nano 2019, 13, 3910–3923.

    Article  CAS  PubMed  Google Scholar 

  8. Fan, W. F.; Wei, Q. Y.; **ang, J. J.; Tang, Y. S.; Zhou, Q.; Geng, Y.; Liu, Y. P.; Sun, R.; Xu, L.; Wang, G. W. et al. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for cancer drug delivery. Adv. Mater. 2022, 34, 2109189.

    Article  CAS  Google Scholar 

  9. Zhang, L. F.; Wang, X. H.; Zhang, C. L.; Lee, J.; Duan, B. W.; **ng, L.; Li, L.; Oh, Y. K.; Jiang, H. L. Sequential nano-penetrators of capillarized liver sinusoids and extracellular matrix barriers for liver fibrosis therapy. ACS Nano 2022, 16, 14029–14042.

    Article  CAS  PubMed  Google Scholar 

  10. Sato, Y.; Murase, K.; Kato, J.; Kobune, M.; Sato, T.; Kawano, Y.; Takimoto, R.; Takada, K.; Miyanishi, K.; Matsunaga, T. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 2008, 26, 431–442.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, Y. H.; Chen, Z. X.; Zhao, D.; Li, D.; He, C. L.; Chen, X. S. A pH-triggered self-unpacking capsule containing zwitterionic hydrogel-coated MOF nanoparticles for efficient oral exendin-4 delivery. Adv. Mater. 2021, 33, 2102044.

    Article  CAS  Google Scholar 

  12. Yu, Y. L.; Shen, X. R.; **ao, X.; Li, L.; Huang, Y. Butyrate modification promotes intestinal absorption and hepatic cancer cells targeting of ferroptosis inducer loaded nanoparticle for enhanced hepatocellular carcinoma therapy. Small 2023, 19, 2301149.

    Article  CAS  Google Scholar 

  13. Liu, C.; Liu, W.; Liu, Y. H.; Duan, H. X.; Chen, L. Q.; Zhang, X. T.; **, M. J.; Cui, M. H.; Quan, X. Q.; Pan, L. B. et al. Versatile flexible micelles integrating mucosal penetration and intestinal targeting for effectively oral delivery of paclitaxel. Acta Pharm. Sin. B 2023, 13, 3425–3443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. **, Z. Y.; Ahmad, E.; Zhang, W.; Li, J. Y.; Wang, A. H.; Faridoon, N.; Wang, N.; Zhu, C. L.; Huang, W.; Xu, L. et al. Dual-modified nanoparticles overcome sequential absorption barriers for oral insulin delivery. J. Controlled Release 2022, 342, 1–13.

    Article  CAS  Google Scholar 

  15. Yu, Y. L.; Wu, Z. H.; Wu, J. W.; Shen, X. R.; Wu, R. N.; Zhou, M. L.; Li, L.; Huang, Y. Investigation of FcRn-mediated transepithelial mechanisms for oral nanoparticle delivery systems. Adv. Ther. 2021, 4, 2100145.

    Article  CAS  Google Scholar 

  16. Yu, Y. L.; Ni, M. J.; Zheng, Y. X.; Huang, Y. Airway epithelial-targeted nanoparticle reverses asthma in inhalation therapy. J. Controlled Release 2024, 367, 223–234.

    Article  CAS  Google Scholar 

  17. Yang, T. T.; Wang, A. H.; Nie, D.; Fan, W. W.; Jiang, X. H.; Yu, M. R.; Guo, S. Y.; Zhu, C. L.; Wei, G.; Gan, Y. Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nat. Commun. 2022, 13, 6649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Theodosiou, M.; Laudet, V.; Schubert, M. From carrot to clinic: An overview of the retinoic acid signaling pathway. Cell. Mol. Life Sci. 2010, 67, 1423–1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, Y. L.; **ng, L. Y.; Li, L.; Wu, J. W.; He, J. H.; Huang, Y. Coordination of rigidity modulation and targeting ligand modification on orally-delivered nanoparticles for the treatment of liver fibrosis. J. Controlled Release 2022, 341, 215–226.

    Article  CAS  Google Scholar 

  20. Yu, Y. L.; Li, S. J.; Yao, Y.; Shen, X. R.; Li, L.; Huang, Y. Increasing stiffness promotes pulmonary retention of ligand-directed dexamethasone-loaded nanoparticle for enhanced acute lung inflammation therapy. Bioact. Mater. 2023, 20, 539–547.

    CAS  PubMed  Google Scholar 

  21. Geerts, A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 2001, 21, 311–336.

    Article  CAS  PubMed  Google Scholar 

  22. Lachowski, D.; Matellan, C.; Gopal, S.; Cortes, E.; Robinson, B. K.; Saiani, A.; Miller, A. F.; Stevens, M. M.; Del Río Hernández, A. E. Substrate stiffness-driven membrane tension modulates vesicular trafficking via caveolin-1. ACS Nano 2022, 16, 4322–4337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiao, J. B.; Fan, Q. Q.; **ng, L.; Cui, P. F.; He, Y. J.; Zhu, J. C.; Wang, L. R.; Pang, T.; Oh, Y. K.; Zhang, C. F. et al. Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis. J. Controlled Release 2018, 283, 113–125.

    Article  CAS  Google Scholar 

  24. You, D. G.; Oh, B. H.; Nguyen, V. Q.; Lim, G. T.; Um, W.; Jung, J. M.; Jeon, J.; Choi, J. S.; Choi, Y. C.; Jung, Y. J. et al. Vitamin A-coupled stem cell-derived extracellular vesicles regulate the fibrotic cascade by targeting activated hepatic stellate cells in vivo. J. Controlled Release 2021, 336, 285–295.

    Article  CAS  Google Scholar 

  25. Wenzel, S. E.; Tyurina, Y. Y.; Zhao, J. M.; Croix, C. M. S.; Dar, H. H.; Mao, G. W.; Tyurin, V. A.; Anthonymuthu, T. S.; Kapralov, A. A.; Amoscato, A. A. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 2017, 171, 628–641.e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun, X. F.; Niu, X. H.; Chen, R. C.; He, W. Y.; Chen, D.; Kang, R.; Tang, D. L. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 2016, 64, 488–500.

    Article  CAS  PubMed  Google Scholar 

  27. Ooko, E.; Saeed, M. E. M.; Kadioglu, O.; Sarvi, S.; Colak, M.; Elmasaoudi, K.; Janah, R.; Greten, H. J.; Efferth, T. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine 2015, 22, 1045–1054.

    Article  CAS  PubMed  Google Scholar 

  28. Kong, Z. Y.; Liu, R.; Cheng, Y. R. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed. Pharmacother. 2019, 109, 2043–2053.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, S. Q.; Zhong, Y.; Fan, W. F.; **ang, J. J.; Wang, G. W.; Zhou, Q.; Wang, J. Q.; Geng, Y.; Sun, R.; Zhang, Z. et al. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. Nat. Biomed. Eng. 2021, 5, 1019–1037.

    Article  CAS  PubMed  Google Scholar 

  30. Miotto, G.; Rossetto, M.; Di Paolo, M. L.; Orian, L.; Venerando, R.; Roveri, A.; Vučković, A. M.; Bosello Travain, V.; Zaccarin, M.; Zennaro, L. et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020, 28, 101328.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, H. Y.; Cheng, Y.; Mao, C.; Liu, S.; **ao, D. S.; Huang, J.; Tao, Y. G. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol. Ther. 2021, 29, 2185–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, X.; Yao, Q. Y.; Liu, H. C.; **, Q. W.; Xu, B. L.; Zhang, S. C.; Tu, C. T. Placental growth factor silencing ameliorates liver fibrosis and angiogenesis and inhibits activation of hepatic stellate cells in a murine model of chronic liver disease. J. Cell. Mol. Med. 2017, 21, 2370–2385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, Z.; Lin, C. Y.; Cheng, K. siRNA-and miRNA-based therapeutics for liver fibrosis. Transl. Res. 2019, 214, 17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, L.; Shan, W.; Zhang, Z. R.; Huang, Y. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Adv. Drug Delivery Rev. 2018, 123, 150–163.

    Article  Google Scholar 

  35. Kumar, V.; Mondal, G.; Slavik, P.; Rachagani, S.; Batra, S. K.; Mahato, R. I. Codelivery of small molecule hedgehog inhibitor and miRNA for treating pancreatic cancer. Mol. Pharm. 2015, 12, 1289–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCuskey, R. S. Morphological mechanisms for regulating blood flow through hepatic sinusoids. Liver 2000, 20, 3–7.

    Article  CAS  PubMed  Google Scholar 

  37. Niu, Z. G.; Tedesco, E.; Benetti, F.; Mabondzo, A.; Montagner, I. M.; Marigo, I.; Gonzalez-Touceda, D.; Tovar, S.; Diéguez, C.; Santander-Ortega, M. J. et al. Rational design of polyarginine nanocapsules intended to help peptides overcoming intestinal barriers. J. Controlled Release 2017, 263, 4–17.

    Article  CAS  Google Scholar 

  38. El Moukhtari, S. H.; Rodríguez-Nogales, C.; Blanco-Prieto, M. J. Oral lipid nanomedicines: Current status and future perspectives in cancer treatment. Adv. Drug Delivery Rev. 2021, 173, 238–251.

    Article  CAS  Google Scholar 

  39. Des Rieux, A.; Pourcelle, V.; Cani, P. D.; Marchand-Brynaert, J.; Préat, V. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv. Drug Delivery Rev. 2013, 65, 833–844.

    Article  CAS  Google Scholar 

  40. Xu, Y. N.; Zheng, Y. X.; Wu, L.; Zhu, X.; Zhang, Z. R.; Huang, Y. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl. Mater. Interfaces 2018, 10, 9315–9324.

    Article  CAS  PubMed  Google Scholar 

  41. Wu, L.; Bai, Y. L.; Wang, L. L.; Liu, X.; Zhou, R.; Li, L.; Wu, R. N.; Zhang, Z. R.; Zhu, X.; Huang, Y. Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. J. Controlled Release 2020, 323, 151–160.

    Article  CAS  Google Scholar 

  42. Tsuchida, T.; Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 397–411.

    Article  CAS  PubMed  Google Scholar 

  43. Sato, Y.; Murase, K.; Kato, J.; Kobune, M.; Sato, T.; Kawano, Y.; Takimoto, R.; Takada, K.; Miyanishi, K.; Matsunaga, T. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 2008, 26, 431–442.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, Z. P.; Wang, C. M.; Zha, Y.; Hu, W.; Gao, Z. F.; Zang, Y. H.; Chen, J. N.; Zhang, J. F.; Dong, L. Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy. ACS Nano 2015, 9, 2405–2419.

    Article  CAS  PubMed  Google Scholar 

  45. Carlson, B. A.; Tobe, R.; Yefremova, E.; Tsuji, P. A.; Hoffmann, V. J.; Schweizer, U.; Gladyshev, V. N.; Hatfield, D. L.; Conrad, M. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 2016, 9, 22–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sui, M.; Jiang, X. F.; Chen, J.; Yang, H. Y.; Zhu, Y. Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway. Biomed. Pharmacother. 2018, 106, 125–133.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundamental Research Funds for the Central Universities (No. SWU-KQ22024), the NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and Excipients (No. PPE2023005), the China Postdoctoral Science Foundation (No. 2023M740731), the Chongqing Science and Technology Commission (No. CSTB2022TIAD-KPX0094), National Key Research and Development Program of China (No. 2021YFD1800900), National Natural Science Foundation of China (No. 82073790).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinglan Yu or Lei Luo.

Ethics declarations

The authors declare that there are no conflict interests of this work.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhang, S., Xu, Y. et al. Oral delivery of ferroptosis inducers for effective treatment of hepatic fibrosis. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6725-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6725-z

Keywords

Navigation