Log in

Experimental determination of the Young’s modulus of individual single-walled carbon nanotubes with single chirality

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

One-dimensional carbon nanotube (CNT) exhibits excellent mechanical properties and is considered to be an ideal candidate material for the space elevator. However, subtle changes in its chirality strongly affect its physical and chemical properties, including mechanical properties (such as Young’s modulus, YM). Theoretical studies reveal that the YMs of perfect single-walled carbon nanotubes (SWCNTs) are in the order of TPa and related to their structures. Nevertheless, due to the lack of SWCNTs samples with well-defined structures and the difficulties in mechanical tests on individual SWCNTs, the theoretical correlations between YM and structure of SWCNTs have not been verified and are still in debate, which directly influences the practical utilization of the excellent mechanical properties of SWCNTs. In this work, we have developed an experimental method to measure the YM of an individual micrometer-scale suspended CNT by atomic force microscopy. A distinct regularity is found between the YM and chirality (i.e., chiral angle and diameter) of SWCNT in the experiment for the first time. By comparing the YMs of SWCNTs with similar diameters and different chiral angles, it manifests that the SWCNT with a near zigzag configuration has a larger YM. This finding suggests that the effect of SWCNT’s structures on the YMs cannot be ignored. The developed method of measuring YMs of SWCNTs will be valuable for further experimental research on the inherent physical and chemical properties of SWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  CAS  Google Scholar 

  2. Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.

    Article  CAS  Google Scholar 

  3. Lu, J. P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lrtt. 1997, 79, 1297–1300.

    CAS  Google Scholar 

  4. Gupta, S.; Dharamvir, K.; **dal, V. K. Elastic moduli of single-walled carbon nanotubes and their ropes. Phys. Rev.B 2005, 72, 165428.

    Article  Google Scholar 

  5. Nixon, A.; Knapman, J.; Wright, D. H. Space elevator tether materials: An overview of the current candidates. Acta Astronaut. 2023, 210, 483–487.

    Article  CAS  Google Scholar 

  6. Chang, T.; Gao, H. J. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mrch. Phys. Solids 2003, 51, 1059–1074.

    Article  CAS  Google Scholar 

  7. Shen, L. X.; Li, J. Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B 2004, 69, 045414.

    Article  Google Scholar 

  8. Mashapa, M. G.; Ray, S. S. Molecular dynamics simulation studies of structural and mechanical properties of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2010, 10, 8083–8087.

    Article  CAS  PubMed  Google Scholar 

  9. Bian, L. C.; Yang, J. Q.; Cheng, Y. Molecular structure based study on the elastic properties of carbon nanotubes in a thermal environment. J. Mol. Struct. 2022, 1262, 133013.

    Article  CAS  Google Scholar 

  10. Mylvaganam, K.; Zhang, L. C. Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes. Carbon 2004, 42, 2025–2032.

    Article  CAS  Google Scholar 

  11. Agrawal, P. M.; Sudalayandi, B. S.; Raff, L. M.; Komanduri, R. Molecular dynamics (MD) simulations of the dependence of C–C bond lengths and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT). Comput. Mater. Sci. 2008, 41, 450–456.

    Article  CAS  Google Scholar 

  12. Weng, M.-H.; Ju, S.-P.; Wu, W.-S. The collective motion of carbon atoms in a (10,10) single wall carbon nanotube under axial tensile strain. J. Appl. Phys. 2009, 106, 063504.

    Article  Google Scholar 

  13. Ju, S.-P.; Weng, M.-H.; Wu, W.-S. MD investigation of the collective carbon atom behavior of a (17,0) zigzag single wall carbon nanotube under axial tensile strain. J. Nanopart. Res. 2010, 12, 2979–2987.

    Article  CAS  Google Scholar 

  14. Cai, J.; Wang, Y. D.; Wang, C. Y. Effect of ending surface on energy and Young’s modulus of single-walled carbon nanotubes studied using linear scaling quantum mechanical method. Phys. B: Condens. Matter 2009, 404, 3930–3934.

    Article  CAS  Google Scholar 

  15. Bian, L. C.; Li, H.; Cheng, Y. Temperature and size-dependent modeling for predicting mechanical properties of carbon nanotubes. Appl. Math. Modell. 2021, 98, 518–536.

    Article  Google Scholar 

  16. Sakharova, N. A.; Pereira, A. F. G.; Antunes, J. M.; Brett, C. M. A.; Fernandes, J. V. Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study. Compos. Part B: Eng. 2015, 75, 73–85.

    Article  CAS  Google Scholar 

  17. Tserpes, K. I.; Papanikos, P. Finite element modeling of singlewalled carbon nanotubes. Compos. Part B: Eng. 2005, 36, 468–477.

    Article  Google Scholar 

  18. Popov, V. N.; Van Doren, V. E.; Balkanski, M. Elastic properties of single-walled carbon nanotubes. Phys. Rev. B 2000, 61, 3078–3084.

    Article  CAS  Google Scholar 

  19. Veedu, V. P.; Askari, D.; Ghasemi-Nejhad, M. N. Chiaality dependence of carbon single-walled nanotube material properties: Axial Young’s modulus. J. Nanosci. Nanotechnol. 2006, 6, 2159–2166.

    Article  CAS  PubMed  Google Scholar 

  20. Čanađija, M. Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies. Carbon 2021, 184, 891–901.

    Article  Google Scholar 

  21. Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 2011, 23, 3387–3391.

    Article  CAS  PubMed  Google Scholar 

  22. Pan, Z. W.; **e, S. S.; Lu, L.; Chang, B. H.; Sun, L. F.; Zhou, W. Y.; Wang, G.; Zhang, D. L. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl. Phys. Lett. 1999, 74, 3152–3154.

    Article  CAS  Google Scholar 

  23. Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1990, 387, 678–680.

    Google Scholar 

  24. Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; **e, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

    Article  CAS  PubMed  Google Scholar 

  25. Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. F. et al. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

    Article  CAS  PubMed  Google Scholar 

  26. Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 2019, 10, 3040.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shen, B. Y.; Zhu, Z. X.; Zhang, J. Y.; **e, H. H.; Bai, Y. X.; Wei, F. Single-carbon-nanotube manipulations and devices based on macroscale anthracene flakes. Adv. Mater. 2018, 30, 1705844.

    Article  Google Scholar 

  28. Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552–5555.

    Article  CAS  PubMed  Google Scholar 

  29. Wu, Y.; Huang, M. Y.; Wang, F.; Huang, X. M. H.; Rosenblatt, S.; Huang, L. M.; Yan, H. G.; O’Brien, S. P.; Hone, J.; Heinz, T. F. Determination of the Young’s modulus of structurally defined carbon nanotubes. Nano Lett. 2008, 8, 4158–4161.

    Article  CAS  PubMed  Google Scholar 

  30. Krishnan, A.; Dujardin, E.; Ebbesen, T. W.; Yianilos, P. N.; Treacy, M. M. J. Young’s modulus of single-walled nanotubes. Phys. Rev. B 1990, 58, 14013–14019.

    Article  Google Scholar 

  31. Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R. O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 2002, 334, 173–178.

    Article  Google Scholar 

  32. Frank, I. W.; Tanenbaum, D. M.; Van der Zande, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561.

    Article  CAS  Google Scholar 

  33. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  CAS  PubMed  Google Scholar 

  34. Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; **, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    Article  CAS  PubMed  Google Scholar 

  35. Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Lui, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405, 769–772.

    Article  CAS  PubMed  Google Scholar 

  36. Salvetat, J. P.; Briggs, G. A. D.; Bonard, J. M.; Bacsa, R. R.; Kulik, A. J.; Stöckli, T.; Burnham, N. A.; Forró, L. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 1999, 82, 944–947.

    Article  CAS  Google Scholar 

  37. Huang, S. M.; Woodson, M.; Smalley, R.; Liu, J. Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett. 2004, 4, 1025–1028.

    Article  CAS  Google Scholar 

  38. Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; **, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.

    Article  CAS  PubMed  Google Scholar 

  39. **, Z.; Chu, H. B.; Wang, J. Y.; Hong, J. X.; Tan, W. C.; Li, Y. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett. 2007, 7, 2073–2079.

    Article  CAS  PubMed  Google Scholar 

  40. Yao, Y. G.; Dai, X. C.; Liu, R.; Zhang, J.; Liu, Z. F. Tuning the diameter of single-walled carbon nanotubes by temperature-mediated chemical vapor deposition. J. Phys. Chem.C 2009, 113, 13051–13059.

    Article  CAS  Google Scholar 

  41. Peng, B. H.; Yao, Y. G.; Zhang, J. Effect of the Reynolds and Richardson numbers on the growth of well-aligned ultra long single-walled carbon nanotubes. J. Phys. Chem. C 2010, 114, 12960–12965.

    Article  CAS  Google Scholar 

  42. Arenal, R.; Löthman, P.; Picher, M.; Than, T.; Paillet, M.; Jourdain, V. Direct evidence of atomic structure conservation along ultra-long carbon nanotubes. J. Phys. Chem. C 2012, 116, 14103–14107.

    Article  CAS  Google Scholar 

  43. Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; **e, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. Acs Nano 2013, 7, 6156–6161.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, X.; Song, L.; Cai, L.; Tian, X. Z.; Zhang, Q.; Qi, X. Y.; Zhou, W. B.; Zhang, N.; Yang, F.; Fan, Q. X. et al. Optiaal visualization and polarized light absorption of the single-wall carbon nanotube to verify intrinsic thermal applications. Light: Sci. Appl. 2015, 4, e318.

    Article  CAS  Google Scholar 

  45. Yang, F.; Ji, Y. L.; Zhang, X.; Fan, Q. X.; Zhang, N.; Gu, X. G.; **ao, Z. J.; Zhang, Q.; Wang, Y. C.; Wu, X. C. et al. Detection of invisible phonon modes in individual defect-free carbon nanotubes by gradient-field Raman scattering. Chin. Phys. B 2017, 26, 078801.

    Article  Google Scholar 

  46. Liu, K. H.; Wang, W. L.; Wu, M. H.; **ao, F. J.; Hong, X. P.; Aloni, S.; Bai, X. D.; Wang, E. G.; Wang, F. Intrinsic radial breathing oscillation in suspended single-walled carbon nanotubes. Phys. Rev. B 2011, 83, 113404.

    Article  Google Scholar 

  47. Liu, K. H.; Deslippe, J.; **ao, F. J.; Capaz, R. B.; Hong, X. P.; Aloni, S.; Zettl, A.; Wang, W. L.; Bai, X. D.; Louie, S. G. et al. An atlas of carbon nanotube optical transitions. Nat. Nanotechnol. 2012, 7, 325–329.

    Article  CAS  PubMed  Google Scholar 

  48. Nugraha, A. R. T.; Saito, R.; Sato, K.; Araujo, P. T.; Jorio, A.; Dresselhaus, M. S. Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes. Appl. Phys. Lett. 2010, 97, 091905.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2018YFA0208402 and 2020YFA0714700), the National Natural Science Foundation of China (Nos. 52172060, 51820105002, 11634014 and 51372269). X. J. W. thanks Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2020005), One Hundred Talent Project of Institute of Physics, CAS. H. P. L. and X. Z. thank support by the “One Hundred talents project” of CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ao Zhang or Weiya Zhou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Zhang, X., Wang, Y. et al. Experimental determination of the Young’s modulus of individual single-walled carbon nanotubes with single chirality. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6722-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6722-2

Keywords

Navigation