Log in

In situ probing of electron transfer at the dynamic MoS2/graphene–water interface for modulating boundary slip

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The boundary slip condition is pivotal for nanoscale fluid motion. Recent research has primarily focused on simulating the interaction mechanism between the electronic structure of two-dimensional materials and slip of water at the nanoscale, raising the possibility for ultralow friction flow of water at the nanoscale. However, experimentally elucidating electronic interactions at the dynamic solid–liquid interface to control boundary slip poses a significant challenge. In this study, the crucial role of electron structures at the dynamic solid–liquid interface in regulating slip length was revealed. Notably, the slip length of water on the molybdenum disulfide/graphene (MoS2/G) heterostructure (100.9 ± 3.6 nm) significantly exceeded that of either graphene (27.7 ± 2.2 nm) or MoS2 (5.7 ± 3.1 nm) alone. It was also analyzed how electron transfer significantly affected interface interactions. Excess electrons played a crucial role in determining the type and proportion of excitons at both MoS2–water and MoS2/G–water interfaces. Additionally, by applying voltage, distinct photoluminescence (PL) responses at static and dynamic interfaces were discovered, achieving a 5-fold modulation in PL intensity and a 2-fold modulation in the trion to exciton intensity ratio. More electrons transfer from the top graphene to the bottom MoS2 at the MoS2/G–water interface, reducing surface charge density. Thus, the reduction of electrostatic interactions between the solid and water leads to an increased slip length of water on the MoS2/G heterostructure. The process aids in comprehending the origin of frictional resistance at the subatomic scale. This work establishes a foundation for actively controlling and designing of fluid transport at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mikhailov, G. K. Chapter 9—Daniel bernoulli, Hydrodynamica (1738). In Landmark Writings in Western Mathematics 1640–1940; Grattan-Guinness, I.; Cooke, R.; Corry, L.; Crépel, P.; Guicciardini, N., Eds.; Elsevier: Amsterdam, 2005; pp 131–142.

    Chapter  Google Scholar 

  2. Neto, C.; Evans, D. R.; Bonaccurso, E.; Butt, H. J.; Craig, V. S. J. Boundary slip in Newtonian liquids: A review of experimental studies. Rep. Prog. Phys. 2005, 68, 2859–2897.

    Article  CAS  Google Scholar 

  3. Li, J. F.; Li, J. J.; Yi, S.; Wang, K. Q. Boundary slip of oil molecules at MoS2 homojunctions governing superlubricity. ACS Appl. Mater. Interfaces 2022, 14, 8644–8653.

    Article  CAS  PubMed  Google Scholar 

  4. Yi, Z. R.; Wang, X.; Li, W. B.; Qin, X. Z.; Li, Y.; Wang, K. Q.; Guo, Y. T.; Li, X.; Zhang, W. M.; Wang, Z. K. Interfacial friction at action: Interactions, regulation, and applications. Friction 2023, 11, 2153–2180.

    Article  Google Scholar 

  5. Gao, T. Y.; Li, J. L.; Wang, W. Q.; Luo, J. B. Extremely low friction on gold surface with surfactant molecules induced by surface potential. Friction 2023, 11, 513–523.

    Article  CAS  Google Scholar 

  6. Li, J. J.; Cao, W.; Li, J. F.; Ma, M.; Luo, J. B. Molecular origin of superlubricity between graphene and a highly hydrophobic surface in water. J. Phys. Chem. Lett. 2019, 10, 2978–2984.

    Article  CAS  PubMed  Google Scholar 

  7. Sokoloff, J. B. Effects of electronic friction from the walls on water flow in carbon nanotubes and on water desalination. Phys. Rev. E 2019, 100, 023112.

    Article  CAS  PubMed  Google Scholar 

  8. Keerthi, A.; Goutham, S.; You, Y.; Iamprasertkun, P.; Dryfe, R. A. W.; Geim, A. K.; Radha, B. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 2021, 12, 3092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.

    Article  CAS  PubMed  Google Scholar 

  10. Marbach, S.; Bocquet, L. Osmosis, from molecular insights to large-scale applications. Chem. Soc. Rev. 2019, 48, 3102–3144.

    Article  CAS  PubMed  Google Scholar 

  11. Ramos-Alvarado, B.; Kumar, S.; Peterson, G. P. Hydrodynamic slip length as a surface property. Phys. Rev. E 2016, 93, 023101.

    Article  PubMed  Google Scholar 

  12. Govind Rajan, A.; Strano, M. S.; Blankschtein, D. Liquids with lower wettability can exhibit higher friction on hexagonal boron nitride: The intriguing role of solid-liquid electrostatic interactions. Nano Lett. 2019, 19, 1539–1551.

    Article  CAS  PubMed  Google Scholar 

  13. Kavokine, N.; Bocquet, M. L.; Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 2022, 602, 84–90.

    Article  CAS  PubMed  Google Scholar 

  14. Coquinot, B.; Bocquet, L.; Kavokine, N. Quantum feedback at the solid-liquid interface: Flow-induced electronic current and its negative contribution to friction. Phys. Rev. X 2023, 13, 011019.

    CAS  Google Scholar 

  15. Bui, A. T.; Thiemann, F. L.; Michaelides, A.; Cox, S. J. Classical quantum friction at water–carbon interfaces. Nano Lett. 2023, 23, 580–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lizée, M.; Marcotte, A.; Coquinot, B.; Kavokine, N.; Sobnath, K.; Barraud, C.; Bhardwaj, A.; Radha, B.; Niguès, A.; Bocquet, L. et al. Strong electronic winds blowing under liquid flows on carbon surfaces. Phys. Rev. X 2023, 13, 011020.

    Google Scholar 

  17. Joly, L.; Ybert, C.; Trizac, E.; Bocquet, L. Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics. J. Chem. Phys. 2006, 125, 204716.

    Article  PubMed  Google Scholar 

  18. **g, D. L.; Bhushan, B. The coupling of surface charge and boundary slip at the solid–liquid interface and their combined effect on fluid drag: A review. J. Colloid Interface Sci. 2015, 454, 152–179.

    Article  CAS  PubMed  Google Scholar 

  19. Soong, C. Y.; Hwang, P. W.; Wang, J. C. Analysis of pressure-driven electrokinetic flows in hydrophobic microchannels with slip-dependent zeta potential. Microfluid. Nanofluid. 2010, 9, 211–223.

    Article  CAS  Google Scholar 

  20. Liu, Z.; Feng, Y. J.; Wang, L.; Liu, Q. Y.; Liu, G. H. Electrokinetic energy conversion in the nanochannel coupled with surface charge and slip effects. Int. J. Heat Mass Transfer 2023, 204, 123874.

    Article  CAS  Google Scholar 

  21. Luan, B. Q.; Zhou, R. H. Wettability and friction of water on a MoS2 nanosheet. Appl. Phys. Lett. 2016, 108, 131601.

    Article  Google Scholar 

  22. Wen, X. J.; Fan, X. T.; **, X. F.; Cheng, J. Band alignment of 2D material–water interfaces. J. Phys. Chem. C 2023, 127, 4132–4143.

    Article  CAS  Google Scholar 

  23. Zhang, L. Y.; Wu, K. L.; Chen, Z. X.; Li, J.; Yu, X. R.; Yang, S. Molecular-scale friction at a water–graphene interface and its relationship with slip behavior. Phys. Fluids 2020, 32, 092001.

    Article  CAS  Google Scholar 

  24. Zhu, H. M.; Zhang, W.; Ye, C.; Shi, J. Q.; Lu, W. X. Rotation induced symmetry change of friction coefficient of water on graphene/h-BN heterostructures. Appl. Phys. Lett. 2022, 120, 084103.

    Article  CAS  Google Scholar 

  25. Cho, K. J.; Gim, S.; Lim, H. K.; Kim, C.; Kim, H. Water slippage on graphitic and metallic surfaces: Impact of the surface packing structure and electron density tail. J. Phys. Chem. C 2020, 124, 11392–11400.

    Article  CAS  Google Scholar 

  26. Becerra, D.; Córdoba, A.; Walther, J. H.; Zambrano, H. A. Water flow in a polymeric nanoslit channel with graphene and hexagonal boron nitride wall coatings: An atomistic study. Phys. Fluids 2023, 35, 102009.

    Article  CAS  Google Scholar 

  27. Geng, X. R.; Yu, M.; Zhang, W.; Liu, Q. W.; Yu, X. P.; Lu, Y. Slip length and structure of liquid water flowing past atomistic smooth charged walls. Sci. Rep. 2019, 9, 18957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tocci, G.; Joly, L.; Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: Very different slippage despite very similar interface structures. Nano Lett. 2014, 14, 6872–6877.

    Article  CAS  PubMed  Google Scholar 

  29. Tocci, G.; Bilichenko, M.; Joly, L.; Iannuzzi, M. Ab initio nanofluidics: Disentangling the role of the energy landscape and of density correlations on liquid/solid friction. Nanoscale 2020, 12, 10994–11000

    Article  CAS  PubMed  Google Scholar 

  30. Sokoloff, J. B. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations. Phys. Rev. E 2018, 97, 033107.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, J. C.; Liu, H.; Hu, X. M.; Liu, Y. S.; Liu, D. M. Imaging of defect-accelerated energy transfer in MoS2/hBN/WS2 heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 8521–8526.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, H.; Wang, J. C.; Liu, Y. S.; Wang, Y.; Xu, L. J.; Huang, L.; Liu, D. M.; Luo, J. B. Visualizing ultrafast defect-controlled interlayer electron–phonon coupling in van der Waals heterostructures. Adv. Mater. 2022, 34, 2106955.

    Article  CAS  Google Scholar 

  33. Zhu, X. D.; He, J. B.; Liu, W. M.; Zheng, Y. X.; Sheng, C. X.; Luo, Y.; Li, S. J.; Zhang, R. J.; Chu, J. H. Revealing the modulation effects on the electronic band structures and exciton properties by stacking graphene/h-BN/MoS2 schottky heterostructures. ACS Appl. Mater. Interfaces 2023, 15, 2468–2478.

    Article  CAS  PubMed  Google Scholar 

  34. Greenwood, G.; Kim, J. M.; Zheng, Q. L.; Nahid, S. M.; Nam, S.; Espinosa-Marzal, R. M. Effects of layering and supporting substrate on liquid slip at the single-layer graphene interface. ACS Nano 2021, 15, 10095–10106.

    Article  CAS  PubMed  Google Scholar 

  35. Li, H.; Xu, Z.; Ma, M. Temperature-dependent slip length for water and electrolyte solution. J. Colloid Interface Sci. 2023, 636, 512–517.

    Article  CAS  PubMed  Google Scholar 

  36. Ma, M. D.; Shen, L. M.; Sheridan, J.; Liu, J. Z.; Chen, C.; Zheng, Q. S. Friction of water slip** in carbon nanotubes. Phys. Rev. E 2011, 83, 036316.

    Article  Google Scholar 

  37. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical do**. Nano Lett. 2013, 13, 5944–5948.

    Article  CAS  PubMed  Google Scholar 

  38. Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.

    Article  CAS  PubMed  Google Scholar 

  39. Li, Y.; Xu, C. Y.; Qin, J. K.; Feng, W.; Wang, J. Y.; Zhang, S. Q.; Ma, L. P.; Cao, J.; Hu, P. A.; Ren, W. C. et al. Tuning the excitonic states in MoS2/graphene van der Waals heterostructures via electrochemical gating. Adv. Funct. Mater. 2016, 26, 293–302.

    Article  CAS  Google Scholar 

  40. Kimura, D.; Yotsuya, S.; Yoshimura, T.; Fujimura, N.; Kiriya, D. Strong photoluminescence enhancement in molybdenum disulfide in aqueous media. Langmuir 2022, 38, 13048–13054.

    Article  CAS  PubMed  Google Scholar 

  41. Santos, E. J. G.; Kaxiras, E. Electric-field dependence of the effective dielectric constant in graphene. Nano Lett. 2013, 13, 898–902.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, X. J.; Zhang, J. Y.; Liu, X.; Lin, S. Q.; Wang, Z. L. Studying the droplet sliding velocity and charge transfer at a liquid–solid interface. J. Mater. Chem. A 2023, 11, 5696–5702.

    Article  CAS  Google Scholar 

  43. Seki, T.; Ihara, T.; Kanemitsu, Y.; Hayamizu, Y. Photoluminescence of CVD-grown MoS2 modified by pH under aqueous solutions toward potential biological sensing. 2D Mater. 2020, 7, 034001.

    Article  CAS  Google Scholar 

  44. Zhang, W. J.; Matsuda, K.; Miyauchi, Y. pH-dependent photoluminescence properties of monolayer transition-metal dichalcogenides immersed in an aqueous solution. J. Phys. Chem. C 2018, 122, 13175–13181.

    Article  CAS  Google Scholar 

  45. Luo, B.; Liu, T.; Cai, C. C.; Yuan, J. X.; Liu, Y. H.; Gao, C.; Meng, X. J.; Wang, J. L.; Zhang, S.; Chi, M. C. et al. Triboelectric charge-separable probes for quantificationally charge investigating at the liquid-solid interface. Nano Energy 2023, 113, 108532.

    Article  CAS  Google Scholar 

  46. Yamada, Y.; Shinokita, K.; Okajima, Y.; Takeda, S. N.; Matsushita, Y.; Takei, K.; Yoshimura, T.; Ashida, A.; Fujimura, N.; Matsuda, K. et al. Photoactivation of strong photoluminescence in superacid-treated monolayer molybdenum disulfide. ACS Appl. Mater. Interfaces 2020, 12, 36496–36504.

    Article  CAS  PubMed  Google Scholar 

  47. Mangaud, E.; Bocquet, M. L.; Bocquet, L.; Rotenberg, B. Chemisorbed vs physisorbed surface charge and its impact on electrokinetic transport: Carbon vs. boron nitride surface. J. Chem. Phys. 2022, 156, 044703.

    Article  CAS  PubMed  Google Scholar 

  48. Barrios, B.; Minakata, D. Aqueous-phase single-electron transfer calculations for carbonate radicals using the validated marcus theory. Environ. Sci. Technol. Lett. 2023, 10, 204–209.

    Article  CAS  Google Scholar 

  49. Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B. Engineering the charge transfer in all 2D graphene-nanoplatelets heterostructure photodetectors. Sci. Rep. 2016, 6, 24909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, H.; Wang, C.; Wang, T.; Hu, X. M.; Liu, D. M.; Luo, J. B. Controllable interlayer charge and energy transfer in perovskite quantum dots/ transition metal dichalcogenide heterostructures. Adv. Mater. Interfaces 2019, 6, 1901263.

    Article  CAS  Google Scholar 

  51. Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

    Article  Google Scholar 

  52. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  53. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–1396.

    Article  CAS  PubMed  Google Scholar 

  54. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  PubMed  Google Scholar 

  55. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  56. Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.

    Article  CAS  PubMed  Google Scholar 

  57. Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

    Article  PubMed  Google Scholar 

  58. Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 2019, 151, 234101.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52075284, 52105195, and 11890672) and the Postdoctoral Research Foundation of China (Nos. 2020M680528, BX2021151, and 2022M711805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dameng Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liu, D. In situ probing of electron transfer at the dynamic MoS2/graphene–water interface for modulating boundary slip. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6698-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6698-y

Keywords

Navigation