Log in

Enhancing osteogenic bioactivities of coaxial electrospinning nano-scaffolds through incorporating iron oxide nanoparticles and icaritin for bone regeneration

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bone tissue engineering provides a promising strategy for the treatment of bone defects. Nonetheless, the clinical utilization of biomaterial-based scaffolds is constrained by their inadequate mechanical strength and absence of osteo-inductive properties. Here, we proposed to endow nano-scaffold (NS) constructed by coaxial electrospinning technique with enhanced osteogenic bioactivities and mechanical properties by incorporating biocompatible magnetic iron oxide nanoparticles (IONPs) and icaritin (ICA). Four types of nano-scaffolds (NS, ICA@NS, NS-IONPs and ICA@NS-IONPs) were prepared. The incorporation of ICA and IONPs minimally impact their surface morphological and chemical properties. IONPs enhanced the mechanical properties of NS scaffolds, including hardness, tensile strength, and elastic modulus. In vitro assessments demonstrated that ICA@NS-IONPs exhibited enhanced osteogenic bioactivities towards mouse calvarial pre-osteoblast cell line MC3T3-E1 as evidenced by detecting the alkaline phosphatase (ALP) activity level, expressions of osteogenesis-related genes and proteins as well as mineralized nodule formation. Mechanistic investigations revealed that MEK/ERK (MAP kinase-ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK)) signaling pathway could offer a plausible explanation for the osteogenic differentiation of MC3T3-E1 cells induced by ICA@NS-IONPs. Furthermore, the implantation of nano-scaffolds in rat skull defects exhibited a substantial improvement in in vivo bone regeneration. Therefore, IONPs and ICA incorporated coaxial electrospinning nano-scaffolds present a novel strategy for the optimization of scaffolds for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quarto, R.; Mastrogiacomo, M.; Cancedda, R.; Kutepov, S. M.; Mukhachev, V.; Lavroukov, A.; Kon, E.; Marcacci, M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 2001, 344, 385–386.

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, G. Y.; Zhang, T. X.; Chen, M.; Yao, K.; Huang, X. Q.; Zhang, B.; Li, Y. Z.; Liu, J.; Wang, Y. B.; Zhao, Z. H. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 2021, 6, 4110–4140.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, W. H.; Yeung, K. W. K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247.

    PubMed  PubMed Central  Google Scholar 

  4. Clark, A. Y.; Martin, K. E.; García, J. R.; Johnson, C. T.; Theriault, H. S.; Han, W. M.; Zhou, D. W.; Botchwey, E. A.; García, A. J. Integrin-specific hydrogels modulate transplanted human bone marrow-derived mesenchymal stem cell survival, engraftment, and reparative activities. Nat. Commun. 2020, 11, 114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dalfino, S.; Savadori, P.; Piazzoni, M.; Connelly, S. T.; Giannì, A. B.; Del Fabbro, M.; Tartaglia, G. M.; Moroni, L. Regeneration of critical-sized mandibular defects using 3D-printed composite scaffolds: A quantitative evaluation of new bone formation in in vivo studies. Adv. Healthcare Mater. 2023, 12, 2300128.

    Article  CAS  Google Scholar 

  6. Fan, B. Y.; Wei, Z. J.; Feng, S. Q. Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res. 2022, 10, 35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gillman, C. E.; Jayasuriya, A. C. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater. Sci. Eng. C 2021, 130, 112466.

    Article  CAS  Google Scholar 

  8. Shang, F. Q.; Yu, Y.; Liu, S. Y.; Ming, L. G.; Zhang, Y. J.; Zhou, Z. F.; Zhao, J. Y.; **, Y. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact. Mater. 2021, 6, 666–683.

    CAS  PubMed  Google Scholar 

  9. Collins, M. N.; Ren, G.; Young, K.; Pina, S.; Reis, R. L.; Oliveira, J. M. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 2021, 31, 2010609.

    Article  CAS  Google Scholar 

  10. Ding, Y. P.; Li, W.; Zhang, F.; Liu, Z. H.; Ezazi, N. Z.; Liu, D. F.; Santos, H. A. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Adv. Funct. Mater. 2019, 29, 1802852.

    Article  Google Scholar 

  11. Ding, J. X.; Zhang, J.; Li, J. N.; Li, D.; **ao, C. S.; **ao, H. H.; Yang, H. H.; Zhuang, X. L.; Chen, X. S. Electrospun polymer biomaterials. Prog. Polym. Sci. 2019, 90, 1–34.

    Article  CAS  Google Scholar 

  12. Si, Y. F.; Shi, S.; Hu, J. L. Applications of electrospinning in human health: From detection, protection, regulation to reconstruction. Nano Today 2023, 48, 101723.

    Article  Google Scholar 

  13. Li, Y.; Wang, J.; Wang, Y.; Cui, W. G. Advanced electrospun hydrogel fibers for wound healing. Compos. Part B Eng. 2021, 223, 109101.

    Article  CAS  Google Scholar 

  14. Shuai, C. J.; Zeng, Z. C.; Yang, Y. W.; Qi, F. W.; Peng, S. P.; Yang, W. J.; He, C. X.; Wang, G. Y.; Qian, G. W. Graphene oxide assists polyvinylidene fluoride scaffold to reconstruct electrical microenvironment of bone tissue. Mater. Des. 2020, 190, 108564.

    Article  CAS  Google Scholar 

  15. Zhang, M.; Du, H. S.; Liu, K.; Nie, S. X.; Xu, T.; Zhang, X. Y.; Si, C. L. Fabrication and applications of cellulose-based nanogenerators. Adv. Compos. Hybrid Mater. 2021, 4, 865–884.

    Article  CAS  Google Scholar 

  16. Ogueri, K. S.; Laurencin, C. T. Nanofiber technology for regenerative engineering. ACS Nano 2020, 14, 9347–9363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Y.; Zhu, J. D.; Cheng, H.; Li, G. Q.; Cho, H.; Jiang, M. J.; Gao, Q.; Zhang, X. W. Developments of advanced electrospinning techniques: A critical review. Adv. Mater. Technol. 2021, 6, 2100410.

    Article  Google Scholar 

  18. Zhang, X. D.; Chi, C.; Chen, J. J.; Zhang, X. D.; Gong, M.; Wang, X.; Yan, J. H.; Shi, R.; Zhang, L. Q.; Xue, J. J. Electrospun quadaxial nanofibers for controlled and sustained drug delivery. Mater. Des. 2021, 206, 109732.

    Article  CAS  Google Scholar 

  19. Yang, Y. Y.; Chang, S. Y.; Bai, Y. F.; Du, Y. T.; Yu, D. G. Electrospun triaxial nanofibers with middle blank cellulose acetate layers for accurate dual-stage drug release. Carbohydr. Polym. 2020, 243, 116477.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, H. B.; Yan, J.; Hu, S. Y.; Sun, S. W.; Zhou, F.; Liu, J.; Tang, S. J.; Zhou, Q.; Ding, H. N.; Zhang, F. M. et al. Janus fibre/sponge composite combined with IOPNs promotes haemostasis and efficient reconstruction in oral guided bone regeneration. Mater. Des. 2022, 222, 111083.

    Article  CAS  Google Scholar 

  21. Mushtaq, A.; Zhao, R. B.; Luo, D. D.; Dempsey, E.; Wang, X. M.; Iqbal, M. Z.; Kong, X. D. Magnetic hydroxyapatite nanocomposites: The advances from synthesis to biomedical applications. Mater. Des. 2021, 197, 109269.

    Article  CAS  Google Scholar 

  22. Li, Y.; Ye, D. W.; Li, M. X.; Ma, M.; Gu, N. Adaptive materials based on iron oxide nanoparticles for bone regeneration. ChemPhysChem 2018, 19, 1965–1979.

    Article  CAS  PubMed  Google Scholar 

  23. Li, X. Y.; Zou, Q.; Man, Y.; Li, W. Synergistic effects of novel superparamagnetic/upconversion ha material and Ti/magnet implant on biological performance and long-term in vivo tracking. Small 2019, 15, 1901617.

    Article  Google Scholar 

  24. Filippi, M.; Dasen, B.; Guerrero, J.; Garello, F.; Isu, G.; Born, G.; Ehrbar, M.; Martin, I.; Scherberich, A. Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials 2019, 223, 119468.

    Article  CAS  PubMed  Google Scholar 

  25. **a, Y.; Sun, J. F.; Zhao, L.; Zhang, F. M.; Liang, X. J.; Guo, Y.; Weir, M. D.; Reynolds, M. A.; Gu, N.; Xu, H. H. K. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018, 183, 151–170.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Q. W.; Chen, B.; Ma, F.; Lin, S. K.; Cao, M.; Li, Y.; Gu, N. Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Res. 2017, 10, 626–642.

    Article  Google Scholar 

  27. Zhu, Y.; Yang, Q.; Yang, M. G.; Zhan, X. H.; Lan, F.; He, J.; Gu, Z. W.; Wu, Y. Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway. ACS Nano 2017, 11, 3690–3704.

    Article  CAS  PubMed  Google Scholar 

  28. Yu, P. J.; Zheng, L. M.; Wang, P.; Chai, S. L.; Zhang, Y. B.; Shi, T. S.; Zhang, L.; Peng, R.; Huang, C. X.; Guo, B. S. et al. Development of a novel polysaccharide-based iron oxide nanoparticle to prevent iron accumulation-related osteoporosis by scavenging reactive oxygen species. Int. J. Biol. Macromol. 2020, 165, 1634–1645.

    Article  CAS  PubMed  Google Scholar 

  29. Hao, S. S.; Meng, J.; Zhang, Y.; Liu, J.; Nie, X.; Wu, F. X.; Yang, Y. L.; Wang, C.; Gu, N.; Xu, H. Y. Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials 2017, 140, 16–25.

    Article  CAS  PubMed  Google Scholar 

  30. Chen, H. M.; Sun, J. F.; Wang, Z. B.; Zhou, Y.; Lou, Z. C.; Chen, B.; Wang, P.; Guo, Z. R.; Tang, H.; Ma, J. Q. et al. Magnetic cell-scaffold interface constructed by superparamagnetic IONP enhanced osteogenesis of adipose-derived stem cells. ACS Appl. Mater. Interfaces 2018, 10, 44279–44289.

    Article  CAS  PubMed  Google Scholar 

  31. Słupski, W.; Jawień, P.; Nowak, B. Botanicals in postmenopausal osteoporosis. Nutrients 2021, 13, 1609.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Indran, I. R.; Liang, R. L. Z.; Min, T. E.; Yong, E. L. Preclinical studies and clinical evaluation of compounds from the genus Epimedium for osteoporosis and bone health. Pharmacol. Ther. 2016, 162, 188–205.

    Article  CAS  PubMed  Google Scholar 

  33. Huang, L.; Wang, X. L.; Cao, H. J.; Li, L.; Chow, D. H. K.; Tian, L.; Wu, H.; Zhang, J. Y.; Wang, N.; Zheng, L. Z. et al. A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice. Biomaterials 2018, 182, 58–71.

    Article  PubMed  Google Scholar 

  34. He, J. P.; Feng, X.; Wang, J. F.; Shi, W. G.; Li, H.; Danilchenko, S.; Kalinkevich, A.; Zhovner, M. Icariin prevents bone loss by inhibiting bone resorption and stabilizing bone biological apatite in a hindlimb suspension rodent model. Acta Pharmacol. Sin. 2018, 39, 1760–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, K. J.; Dong, J.; Lu, J.; Li, L.; Liang, H.; **, J.; Wang, P.; Sun, X. L.; Jiang, Q. Icaritin-incorporated porous hollow iron oxide nanostructures for promoting fracture repair. ACS Appl. Nano Mater. 2022, 5, 6597–6608.

    Article  CAS  Google Scholar 

  36. Van Der Schueren, L.; De Schoenmaker, B.; Kalaoglu, Ö. I.; De Clerck, K. An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur. Polym. J. 2011, 47, 1256–1263.

    Article  CAS  Google Scholar 

  37. Huang, C. X.; Ye, Q.; Dong, J.; Li, L.; Wang, M.; Zhang, Y. Y.; Zhang, Y. B.; Wang, X. C.; Wang, P.; Jiang, Q. Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation. Smart Mater. Med. 2023, 4, 1–14.

    Article  Google Scholar 

  38. Wang, P.; Yin, B. S.; Dong, H. L.; Zhang, Y. B.; Zhang, Y. H.; Chen, R. X.; Yang, Z. K.; Huang, C. X.; Jiang, Q. Coupling biocompatible Au nanoclusters and cellulose nanofibrils to prepare the antibacterial nanocomposite films. Front Bioeng. Biotechnol. 2020, 8, 986.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lin, G. M.; **e, G. Y.; Sui, G. X.; Yang, R. Hybrid effect of nanoparticles with carbon fibers on the mechanical and wear properties of polymer composites. Compos. Part B Eng. 2012, 43, 44–49.

    Article  Google Scholar 

  40. Kotula, A. P.; Snyder, C. R.; Migler, K. B. Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer 2017, 117, 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, W.; Feng, Y. K.; Yang, J.; Fan, J. X.; Lv, J.; Zhang, L.; Guo, J. T.; Ren, X. K.; Zhang, W. C. Electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) for endothelial cell growth. J. Mater. Sci. Mater. Med. 2015, 26, 56.

    Article  Google Scholar 

  42. Wang, P.; Qian, L. P.; Liang, H. X.; Huang, J. H.; **, J.; **e, C. M.; Xue, B.; Lai, J. C.; Zhang, Y. B.; Jiang, L. F. et al. A polyvinyl alcohol/acrylamide hydrogel with enhanced mechanical properties promotes full-thickness skin defect healing by regulating immunomodulation and angiogenesis through paracrine secretion. Engineering, in press, DOI: https://doi.org/10.1016/j.eng.2024.02.005.

  43. Huang, C. X.; Dong, J.; Zhang, Y. Y.; Chai, S. L.; Wang, X. C.; Kang, S. X.; Yu, D. G.; Wang, P.; Jiang, Q. Gold nanoparticles-loaded polyvinylpyrrolidone/ethylcellulose coaxial electrospun nanofibers with enhanced osteogenic capability for bone tissue regeneration. Mater. Des. 2021, 212, 110240.

    Article  CAS  Google Scholar 

  44. Schaks, M.; Giannone, G.; Rottner, K. Actin dynamics in cell migration. Essays Biochem. 2019, 63, 483–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tang, S. J.; Wang, L.; Zhang, Y. Y.; Zhang, F. M. A biomimetic platelet-rich plasma-based interpenetrating network printable hydrogel for bone regeneration. Front. Bioeng. Biotechnol. 2022, 10, 887454.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y. H.; Kong, N.; Zhang, Y. C.; Yang, W. R.; Yan, F. H. Size-dependent effects of gold nanoparticles on osteogenic differentiation of human periodontal ligament progenitor cells. Theranostics 2017, 7, 1214–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Y. B.; Wang, P.; Mao, H. J.; Zhang, Y. H.; Zheng, L. M.; Yu, P. J.; Guo, Z. R.; Li, L.; Jiang, Q. PEGylated gold nanoparticles promote osteogenic differentiation in in vitro and in vivo systems. Mater. Des. 2021, 197, 109231.

    Article  CAS  Google Scholar 

  48. Zhang, Y. H.; Wang, P.; Wang, Y. X.; Li, J.; Qiao, D.; Chen, R. X.; Yang, W. R.; Yan, F. H. Gold nanoparticles promote the bone regeneration of periodontal ligament stem cell sheets through activation of autophagy. Int. J. Nanomed. 2021, 16, 61–73.

    Article  Google Scholar 

  49. Wang, Q. W.; Chen, B.; Cao, M.; Sun, J. F.; Wu, H.; Zhao, P.; **ng, J.; Yang, Y.; Zhang, X. B.; Ji, M. et al. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials 2016, 86, 11–20.

    Article  CAS  PubMed  Google Scholar 

  50. Ling, Y. J.; Nie, D. K.; Huang, Y.; Deng, M. Y.; Liu, Q. Q.; Shi, J. L.; Ouyang, S. G.; Yang, Y.; Deng, S.; Lu, Z. C. et al. Antioxidant cascade nanoenzyme antagonize inflammatory pain by modulating MAPK/p-65 signaling pathway. Adv. Sci. (Weinh.) 2023, 10, e2206934.

    PubMed  Google Scholar 

  51. Lavoie, H.; Gagnon, J.; Therrien, M. ERK signalling: A master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 2020, 21, 607–632.

    Article  CAS  PubMed  Google Scholar 

  52. Granda-Díaz, R.; Manterola, L.; Hermida-Prado, F.; Rodríguez, R.; Santos, L.; García-de-la-Fuente, V.; Fernández, M. T.; Corte-Torres, M. D.; Rodrigo, J. P.; Álvarez-Teijeiro, S. et al. Targeting oncogenic functions of miR-301a in head and neck squamous cell carcinoma by PI3K/PTEN and MEK/ERK pathways. Biomed. Pharmacother. 2023, 161, 114512.

    Article  PubMed  Google Scholar 

  53. Liu, L. J.; Shang, Y. N.; Li, C. J.; Jiao, Y. J.; Qiu, Y. C.; Wang, C. Y.; Wu, Y. G.; Zhang, Q. Y.; Wang, F. J.; Yang, Z. M. et al. Hierarchical nanostructured electrospun membrane with periosteummimic microenvironment for enhanced bone regeneration. Adv. Healthc. Mater. 2021, 10, 2170106

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Basic Research Program of China (Nos. 2021YFA1201404, and 2019YFA0210103), the National Natural Science Foundation of China (Nos. 32271413, and 82272492), Natural Science Foundation of Jiangsu Province (No. BK20232023), Science program of Jiangsu Province Administration for Market Regulation (No. KJ2024010). The schematic diagram (Scheme 1) was drawn by Figdraw.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Wu, Zhihong Xu or Qing Jiang.

Electronic Supplementary Material

12274_2024_6656_MOESM1_ESM.pdf

Enhancing osteogenic bioactivities of coaxial electrospinning nano-scaffolds through incorporating iron oxide nanoparticles and icaritin for bone regeneration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wang, Q., Wu, D. et al. Enhancing osteogenic bioactivities of coaxial electrospinning nano-scaffolds through incorporating iron oxide nanoparticles and icaritin for bone regeneration. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6656-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6656-8

Keywords

Navigation