Log in

The structure–activity relationships of Rh/CeO2–ZrO2 catalysts based on Rh metal size effect in the three-way catalytic reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the continuous tightening of automotive emission regulations and the increasing promotion of energy-efficient hybrid vehicles, new challenges have arisen for the low-temperature performance of three-way catalysts (TWCs). To guide the design of next-generation TWCs, it is essential to further develop our understanding of the relationships between microstructure and catalytic performance. Here, Rh/CeO2–ZrO2 catalysts were synthesized with different Rh metal dispersion by using a combination of the wet impregnation method and reduction treatment. These catalysts included Rh single-atom catalysts, cluster catalysts, and nanoparticle catalysts. The results showed that the Rh nanoparticle catalyst, with an average size of 1.9 nm, exhibited superior three-way catalytic performance compared to the other catalysts. Based on the catalytic activity in a series of simple reaction atmospheres such as CO + O2, NO + CO, and hydrocarbons (HCs) + O2 and operando infrared spectroscopy, we found that metallic Rh sites on Rh nanoparticles are the key factor responsible for the low-temperature catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Twigg, M. V. Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B: Environ. 2007, 70, 2–15.

    Article  CAS  Google Scholar 

  2. Gandhi, H. S.; Graham, G. W.; McCabe, R. W. Automotive exhaust catalysis. J. Catal. 2003, 216, 433–142.

    Article  CAS  Google Scholar 

  3. Lambert, C. K. Current state of the art and future needs for automotive exhaust catalysis. Nat. Catal. 2019, 2, 554–557.

    Article  CAS  Google Scholar 

  4. Farrauto, R. J.; Deeba, M.; Alerasool, S. Gasoline automobile catalysis and its historical journey to cleaner air. Nat. Catal. 2019, 2, 603–613.

    Article  CAS  Google Scholar 

  5. Nagao, Y.; Nakahara, Y.; Sato, T.; Iwakura, H.; Takeshita, S.; Minami, S.; Yoshida, H.; Machida, M. Rh/ZrP2O7 as an efficient automotive catalyst for NOx reduction under slightly lean conditions. ACS Catal. 2015, 5, 1986–1994.

    Article  CAS  Google Scholar 

  6. Shelef, M.; Graham, G. W. Why rhodium in automotive three-way catalysts. Catal. Rev. 1994, 36, 433–457.

    Article  CAS  Google Scholar 

  7. Kummer, J. T. Use of noble metals in automobile exhaust catalysts. J. Phys. Chem. 1986, 90, 4747–4752.

    Article  CAS  Google Scholar 

  8. DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G. W.; Pan, X. Q.; Christopher, P. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 2017, 139, 14150–14165.

    Article  CAS  PubMed  Google Scholar 

  9. Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  11. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  PubMed  Google Scholar 

  12. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated Mars–van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.

    Article  CAS  Google Scholar 

  14. Jeong, H.; Shin, D.; Kim, B. S.; Bae, J.; Shin, S.; Choe, C.; Han, J. W.; Lee, H. Controlling the oxidation state of Pt single atoms for maximizing catalytic activity. Angew. Chem. 2020, 132, 20872–20877.

    Article  Google Scholar 

  15. Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 2015, 350, 189–192.

    Article  CAS  PubMed  Google Scholar 

  16. Xu, Q.; Cheng, X. W.; Zhang, N. Q.; Tu, Y.; Wu, L. H.; Pan, H. B.; Hu, J.; Ding, H. H.; Zhu, J. F.; Li, Y. D. Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts. Nano Res. 2023, 16, 8882–8892.

    Article  CAS  Google Scholar 

  17. Han, B.; Li, T. B.; Zhang, J. Y.; Zeng, C. B.; Matsumoto, H.; Su, Y.; Qiao, B. T.; Zhang, T. A highly active Rh1/CeO2 single-atom catalyst for low-temperature CO oxidation. Chem. Commun. 2020, 56, 4870–4873.

    Article  CAS  Google Scholar 

  18. Marino, S.; Wei, L.; Cortes-Reyes, M.; Cheng, Y. S.; Laing, P.; Cavataio, G.; Paolucci, C.; Epling, W. Rhodium catalyst structural changes during, and their impacts on the kinetics of, CO oxidation. JACS Au 2023, 3, 459–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Srinivasan, A.; Depcik, C. Review of chemical reactions in the NO reduction by CO on rhodium/alumina catalysts. Catal. Rev. 2010, 52, 462–493.

    Article  CAS  Google Scholar 

  20. Asokan, C.; Yang, Y.; Dang, A. L.; Getsoian, A. B.; Christopher, P. Low-temperature ammonia production during NO reduction by CO is due to atomically dispersed rhodium active sites. ACS Catal. 2020, 10, 5217–5222.

    Article  CAS  Google Scholar 

  21. Hoffman, A. J.; Asokan, C.; Gadinas, N.; Kravchenko, P.; Getsoian, A. B.; Christopher, P.; Hibbitts, D. Theoretical and experimental characterization of adsorbed CO and NO on γ-Al2O3-supported Rh nanoparticles. J. Phys. Chem. C 2021, 125, 19733–19755.

    Article  CAS  Google Scholar 

  22. Yoo, C. J.; Getsoian, A.; Bhan, A. NH3 formation pathways from NO reduction by CO in the presence of water over Rh/Al2O3. Appl. Catal. B: Environ. 2021, 286, 119893.

    Article  CAS  Google Scholar 

  23. Newton, M. A.; Belver-Coldeira, C.; Martínez-Arias, A.; Fernández-García, M. Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nat. Mater. 2007, 6, 528–532.

    Article  CAS  PubMed  Google Scholar 

  24. **e, H. J.; Ren, M.; Lei, Q. F.; Fang, W. J.; Ying, F. Explore the catalytic reaction mechanism in the reduction of NO by CO on the Rh7+ cluster: A quantum chemical study. J. Phys. Chem. C 2012, 116, 7776–7781.

    Article  CAS  Google Scholar 

  25. Zhang, S. R.; Tang, Y.; Nguyen, L.; Zhao, Y. F.; Wu, Z. L.; Goh, T. W.; Liu, J. J.; Li, Y. Y.; Zhu, T.; Huang, W. Y. et al. Catalysis on singly dispersed Rh atoms anchored on an inert support. ACS Catal. 2018, 8, 110–121.

    Article  CAS  Google Scholar 

  26. Haneda, M.; Tomida, Y.; Takahashi, T.; Azuma, Y.; Fujimoto, T. Three-way catalytic performance and change in the valence state of Rh in Y- and Pr-doped Rh/ZrO2 under lean/rich perturbation conditions. Catal. Commun. 2017, 90, 1–4.

    Article  CAS  Google Scholar 

  27. Jeong, H.; Kwon, O.; Kim, B. S.; Bae, J.; Shin, S.; Kim, H. E.; Kim, J.; Lee, H. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368–375.

    Article  CAS  Google Scholar 

  28. Gabelnick, A. M.; Capitano, A. T.; Kane, S. M.; Gland, J. L.; Fischer, D. A. Propylene oxidation mechanisms and intermediates using in situ soft X-ray fluorescence methods on the Pt(111) surface. J. Am. Chem. Soc. 2000, 122, 143–149.

    Article  CAS  Google Scholar 

  29. Jeong, H.; Lee, G.; Kim, B. S.; Bae, J.; Han, J. W.; Lee, H. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558–9565.

    Article  CAS  PubMed  Google Scholar 

  30. Muravev, V.; Simons, J. F. M.; Parastaev, A.; Verheijen, M. A.; Struijs, J. J. C.; Kosinov, N.; Hensen, E. J. M. Operando spectroscopy unveils the catalytic role of different palladium oxidation states in CO oxidation on Pd/CeO2 catalysts. Angew. Chem., Int. Ed. 2022, 61, e202200434.

    Article  CAS  Google Scholar 

  31. Matsumura, Y.; Koda, Y.; Yamada, H.; Shigetsu, M.; Takami, A.; Ishimoto, T.; Kai, H. Experimental and computational studies of CO and NO adsorption properties on Rh-based single nanosized catalysts. J. Phys. Chem. C 2020, 124, 2953–2960.

    Article  CAS  Google Scholar 

  32. Pekridis, G.; Kaklidis, N.; Komvokis, V.; Athanasiou, C.; Konsolakis, M.; Yentekakis, I. V.; Marnellos, G. E. Surface and catalytic elucidation of Rh/γ-Al2O3 catalysts during NO reduction by C3H8 in the presence of excess O2, H2O, and SO2. J. Phys. Chem. A 2010, 114, 3969–3980.

    Article  CAS  PubMed  Google Scholar 

  33. Chen, Y. S.; Deng, J.; Fan, J.; Jiao, Y.; Wang, J. L.; Chen, Y. Q. Key role of NO + C3H8 reaction for the elimination of NO in automobile exhaust by three-way catalyst. Environ. Sci. Pollut. Res. 2019, 26, 26071–26081.

    Article  CAS  Google Scholar 

  34. Gänzler, A. M.; Casapu, M.; Vernoux, P.; Loridant, S.; Cadete Santos Aires, F. J.; Epicier, T.; Betz, B.; Hoyer, R.; Grunwaldt, J. D. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem., Int. Ed. 2017, 56, 13078–13082.

    Article  Google Scholar 

  35. Chafik, T.; Kondarides, D. I.; Verykios, X. E. Catalytic reduction of NO by CO over rhodium catalysts: 1. adsorption and displacement characteristics investigated by in situ FTIR and transient-MS techniques. J. Catal. 2000, 190, 446–459.

    Article  CAS  Google Scholar 

  36. Wu, D. F.; Liu, S. X.; Zhong, M. Q.; Zhao, J. F.; Du, C. C.; Yang, Y. L.; Sun, Y. F.; Lin, J. D.; Wan, S. L.; Wang, S. et al. Nature and dynamic evolution of Rh single atoms trapped by CeO2 in CO hydrogenation. ACS Catal. 2022, 12, 12253–12267.

    Article  CAS  Google Scholar 

  37. Shan, J. J.; Li, M. W.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551, 605–608.

    Article  CAS  PubMed  Google Scholar 

  38. Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076–3084.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, B.; Asakura, H.; Yan, N. Atomically dispersed rhodium on self-assembled phosphotungstic acid: Structural features and catalytic CO oxidation properties. Ind. Eng. Chem. Res. 2017, 56, 3578–3587.

    Article  CAS  Google Scholar 

  40. Weng-Sieh, Z.; Gronsky, R.; Bell, A. T. Microstructural evolution of γ-alumina-supported Rh upon aging in air. J. Catal. 1997, 170, 62–74.

    Article  CAS  Google Scholar 

  41. Gayen, A.; Priolkar, K. R.; Sarode, P. R.; Jayaram, V.; Hegde, M. S.; Subbanna, G. N.; Emura, S. Ce1−xRhxO2−δ solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD, TEM, XPS, and EXAFS. Chem. Mater. 2004, 16, 2317–2328.

    Article  CAS  Google Scholar 

  42. Gänzler, A. M.; Casapu, M.; Maurer, F.; Störmer, H.; Gerthsen, D.; Ferré, G.; Vernoux, P.; Bornmann, B.; Frahm, R.; Murzin, V. et al. Tuning the Pt/CeO2 interface by in situ variation of the Pt particle size. ACS Catal. 2018, 8, 4800–4811.

    Article  Google Scholar 

  43. Lykhach, Y.; Kozlov, S. M.; Skála, T.; Tovt, A.; Stetsovych, V.; Tsud, N.; Dvořák, F.; Johánek, V.; Neitzel, A.; Mysliveček, J. et al. Counting electrons on supported nanoparticles. Nat. Mater. 2016, 15, 284–288.

    Article  CAS  PubMed  Google Scholar 

  44. Yang, A. C.; Choksi, T.; Streibel, V.; Aljama, H.; Wrasman, C. J.; Roling, L. T.; Goodman, E. D.; Thomas, D.; Bare, S. R.; Sánchez-Carrera, R. S. et al. Revealing the structure of a catalytic combustion active-site ensemble combining uniform nanocrystal catalysts and theory insights. Proc. Natl. Acad. Sci. USA 2020, 117, 14721–14729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muravev, V.; Parastaev, A.; van den Bosch, Y.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E. J. M. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science 2023, 380, 1174–1179.

    Article  CAS  PubMed  Google Scholar 

  46. Ligthart, D. A. J. M.; van Santen, R. A.; Hensen, E. J. M. Supported rhodium oxide nanoparticles as highly active CO oxidation catalysts. Angew. Chem., Int. Ed. 2011, 50, 5306–5310.

    Article  CAS  Google Scholar 

  47. Farber, R. G.; Turano, M. E.; Killelea, D. R. Identification of surface sites for low-temperature heterogeneously catalyzed CO oxidation on Rh(111). ACS Catal. 2018, 8, 11483–11490.

    Article  CAS  Google Scholar 

  48. **e, S. H.; Liu, L. P.; Lu, Y.; Wang, C. Y.; Cao, S. F.; Diao, W. J.; Deng, J. G.; Tan, W.; Ma, L.; Ehrlich, S. N. et al. Pt atomic single-layer catalyst embedded in defect-enriched ceria for efficient CO oxidation. J. Am. Chem. Soc. 2022, 144, 21255–21266.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang, D.; Wan, G.; García-Vargas, C. E.; Li, L. Z.; Pereira-Hernández, X. I.; Wang, C. M.; Wang, Y. Elucidation of the active sites in single-atom Pd1/CeO2 catalysts for low-temperature CO oxidation. ACS Catal. 2020, 10, 11356–11364.

    Article  CAS  Google Scholar 

  50. Allian, A. D.; Takanabe, K.; Fujdala, K. L.; Hao, X. H.; Truex, T. J.; Cai, J.; Buda, C.; Neurock, M.; Iglesia, E. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. J. Am. Chem. Soc 2011, 133, 4498–4517.

    Article  CAS  PubMed  Google Scholar 

  51. Taha, R.; Martin, D.; Kacimi, S.; Duprez, D. Exchange and oxidation of C16O on 18O-predosed Rh-Al2O3 and Rh-CeO2 catalysts. Catal. Today 1996, 29, 89–92.

    Article  CAS  Google Scholar 

  52. Guan, H. L.; Lin, J.; Qiao, B. T.; Yang, X. F.; Li, L.; Miao, S.; Liu, J. Y.; Wang, A. Q.; Wang, X. D.; Zhang, T. Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures. Angew. Chem. 2016, 128, 2870–2874.

    Article  Google Scholar 

  53. Zhang, L.; Spezzati, G.; Muravev, V.; Verheijen, M. A.; Zijlstra, B.; Filot, I. A. W.; Su, Y. Q.; Chang, M. W.; Hensen, E. J. M. Improved Pd/CeO2 catalysts for low-temperature NO reduction: Activation of CeO2 lattice oxygen by Fe do**. ACS Catal. 2021, 11, 5614–5627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, Y. J.; Sundermann, A.; Gerlach, O.; Low, K. B.; Zhang, C. C.; Zheng, X. L.; Zhu, H. Y.; Axnanda, S. Catalytic decomposition of N2O on supported Rh catalysts. Catal. Today 2020, 355, 608–619.

    Article  CAS  Google Scholar 

  55. Fernández, E.; Liu, L. C.; Boronat, M.; Arenal, R.; Concepcion, P.; Corma, A. Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS Catal. 2019, 9, 11530–11541.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liang, J.; Wang, H. P.; Spicer, L. D. FT-IR study of nitric oxide chemisorbed on rhodium/alumina. J. Phys. Chem. 1985, 89, 5840–5845.

    Article  CAS  Google Scholar 

  57. Solymosi, F.; Sárkány, J. An infrared study of the surface interaction between NO and CO on Rh/Al2O3 catalyst. Appl. Surf. Sci. 1979, 3, 68–82.

    Article  CAS  Google Scholar 

  58. Srinivas, G.; Chuang, S. S. C.; Debnath, S. An in situ infrared study of the reactivity of adsorbed NO and CO on Rh catalysts. J. Catal. 1994, 148, 748–758.

    Article  CAS  Google Scholar 

  59. Hecker, W. C.; Bell, A. T. Infrared observations of Rh-NCO and Si-NCO species formed during the reduction of NO by CO over silica-supported rhodium. J. Catal. 1984, 85, 389–397.

    Article  CAS  Google Scholar 

  60. Solymosi, F.; Berkó, A.; Tarnóczi, T. I. Effects of preadsorbed oxygen on the formation and decomposition of NCO on Rh(111) surfaces. Appl. Surf. Sci. 1984, 18, 233–245.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2022YFB3504202), the National Natural Science Foundation of China (No. 52204376), and Youth Foundation of Hebei Province (No. E2022103007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meisheng Cui or **aowei Huang.

Electronic Supplementary Material

12274_2024_6643_MOESM1_ESM.pdf

Electronic Supplementary Material: The structure–activity relationships of Rh/CeO2–ZrO2 catalysts based on Rh metal size effect in the three-way catalytic reactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Zhao, W., Xu, Z. et al. The structure–activity relationships of Rh/CeO2–ZrO2 catalysts based on Rh metal size effect in the three-way catalytic reactions. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6643-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6643-0

Keywords

Navigation