Log in

3D-shaped 3D-continuously graphene cellulose (3D2GC) architecture

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the endeavor to develop three-dimensional (3D)-architected sophisticated hierarchical structures, the synergy between in-plane and out-of-plane interactions at interfaces offers new functionalities. This interplay, governed by van der Waals (vdW) interfacial nanoarchitectonics, facilitates the design of efficient thermally conductive pathways. This work delves into the kinetics underlying a dual-templating strategy, seamlessly integrating two-dimensional (2D)-graphene sheets with one-dimensional (1D)-cellulose chains at heterointerfaces, thereby transforming into 3D-shaped and 3D-continuously anisotropic structures, termed as (3D2GC) architecture. Hereby, we designed and fabricated an anisotropic graphene cellulose scaffold (GCS) employing a nickel template. The as-grown GCS replicates the 3D-shaped and configuration of the template. The 3D-continuously interconnected fibrous-porous network of the GCS, combined with its anisotropic thermal properties (λaxial/λradial), not only is promising for advanced thermal technologies but also offers advantages in cost-effectiveness and eco-effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ariga, K. Nanoarchitectonics: What’s coming next after nanotechnology. Nanoscale Horiz. 2021, 6, 364–378.

    Article  CAS  PubMed  Google Scholar 

  2. Brisebois, P. P.; Siaj, M. Harvesting graphene oxide-years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C 2020, 8, 1517–1547.

    Article  CAS  Google Scholar 

  3. Foster, E. J.; Moon, R. J.; Agarwal, U. P.; Bortner, M. J.; Bras, J.; Camarero-Espinosa, S.; Chan, K. J.; Clift, M. J. D.; Cranston, E. D.; Eichhorn, S. J. et al. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 2018, 47, 2609–2679.

    Article  CAS  PubMed  Google Scholar 

  4. Shao, G. F.; Hanaor, D. A. H.; Shen, X. D.; Gurlo, A. Freeze casting: From low-dimensional building blocks to aligned porous structures—A review of novel materials, methods, and applications. Adv. Mater. 2020, 32, 1907176.

    Article  CAS  Google Scholar 

  5. Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015, 10, 277–283.

    Article  CAS  PubMed  Google Scholar 

  6. Zhan, J.; Lei, Z. D.; Zhang, Y. Non-covalent interactions of graphene surface: Mechanisms and applications. Chem 2022, 8, 947–979.

    Article  CAS  Google Scholar 

  7. Pérez, E. M.; Martín, N. π–π interactions in carbon nanostructures. Chem. Soc. Rev. 2015, 44, 6425–6433.

    Article  PubMed  Google Scholar 

  8. Lee, H.; Son, N.; Jeong, H. Y.; Kim, T. G.; Bang, G. S.; Kim, J. Y.; Shim, G. W.; Goddeti, K. C.; Kim, J. H.; Kim, N. et al. Friction and conductance imaging of sp2- and sp3-hybridized subdomains on single-layer graphene oxide. Nanoscale 2016, 8, 4063–4069.

    Article  CAS  PubMed  Google Scholar 

  9. Silvestre, G. H.; De Lima, F. C.; Bernardes, J. S.; Fazzio, A.; Miwa, R. H. Nanoscale structural and electronic properties of cellulose/graphene interfaces. Phys. Chem. Chem. Phys. 2023, 25, 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  10. Thakur, V.; Guleria, A.; Kumar, S.; Sharma, S.; Singh, K. Recent advances in nanocellulose processing, functionalization and applications: A review. Mater. Adv. 2021, 2, 1872–1895.

    Article  CAS  Google Scholar 

  11. Chandler, D.; Weeks, J. D.; Andersen, H. C. van der Waals picture of liquids, solids, and phase transformations. Science 1983, 220, 787–794.

    Article  CAS  PubMed  Google Scholar 

  12. Ariga, K.; Matsumoto, M.; Mori, T.; Shrestha, L. K. Materials nanoarchitectonics at two-dimensional liquid interfaces. Beilstein J. Nanotechnol. 2019, 10, 1559–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214.

    Article  CAS  PubMed  Google Scholar 

  14. Jarvis, M. C. Hydrogen bonding and other non-covalent interactions at the surfaces of cellulose microfibrils. Cellulose 2023, 30, 667–687.

    Article  CAS  Google Scholar 

  15. Verma, C.; Ebenso, E. E. Ionic liquid-mediated functionalization of graphene-based materials for versatile applications: A review. Graphene Technol. 2019, 4, 1–15.

    Article  Google Scholar 

  16. Feng, L.; Chen, Z. L. Research progress on dissolution and functional modification of cellulose in ionic liquids. J. Mol. Liq. 2008, 142, 1–5.

    Article  Google Scholar 

  17. Alqus, R.; Eichhorn, S. J.; Bryce, R. A. Molecular dynamics of cellulose amphiphilicity at the graphene–water interface. Biomacromolecules 2015, 16, 1771–1783.

    Article  CAS  PubMed  Google Scholar 

  18. Jahandideh, H.; Macairan, J. R.; Bahmani, A.; Lapointe, M.; Tufenkji, N. Fabrication of graphene-based porous materials: Traditional and emerging approaches. Chem. Sci. 2022, 13, 8924–8941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peng, H. D.; Meng, L. J.; Niu, L.; Lu, Q. H. Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. J. Phys. Chem. C 2012, 116, 16294–16299.

    Article  CAS  Google Scholar 

  20. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  CAS  PubMed  Google Scholar 

  21. ** nanocellulose nets around graphene oxide sheets. Angew. Chem., Int. Ed. 2018, 57, 8508–8513.

    Article  CAS  Google Scholar 

  22. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    Article  CAS  PubMed  Google Scholar 

  23. Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519.

    Article  CAS  PubMed  Google Scholar 

  24. Pernot, G.; Stoffel, M.; Savic, I.; Pezzoli, F.; Chen, P.; Savelli, G.; Jacquot, A.; Schumann, J.; Denker, U.; Mönch, I. et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat. Mater. 2010, 9, 491–495.

    Article  CAS  PubMed  Google Scholar 

  25. Kapitza, P. L. The study of heat transfer in helium II. J. Phys. (Moscow) 1941, 4, 181.

    Google Scholar 

  26. Kreith, F.; Black, W. Z. Basic Heat Transfer; Harper & Row: New York, 1980.

    Google Scholar 

  27. Li, T.; Song, J. W.; Zhao, X. P.; Yang, Z.; Pastel, G.; Xu, S. M.; Jia, C.; Dai, J. Q.; Chen, C. J.; Gong, A. et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 2018, 4, eaar3724.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiao, D. J.; Song, N.; Ding, P.; Shi, L. Y. Enhanced thermal conductivity in oriented cellulose nanofibril/graphene composites via interfacial engineering. Composit. Commun. 2022, 31, 101101.

    Article  Google Scholar 

  29. Song, N.; Jiao, D. J.; Cui, S. Q.; Hou, X. S.; Ding, P.; Shi, L. Y. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. ACS Appl. Mater. Interfaces 2017, 9, 2924–2932.

    Article  CAS  PubMed  Google Scholar 

  30. Cui, S. Q.; Song, N.; Shi, L. Y.; Ding, P. Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid films based on graphene sheets and nanodiamonds. ACS Sustainable Chem. Eng. 2020, 8, 6363–6370.

    Article  CAS  Google Scholar 

  31. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  CAS  PubMed  Google Scholar 

  32. Ma, H.; Babaei, H.; Tian, Z. T. The importance of van der Waals interactions to thermal transport in graphene-C60 heterostructures. Carbon 2019, 148, 196–203.

    Article  CAS  Google Scholar 

  33. Dri, F. L.; Shang, S. L.; Hector, L. G.; Saxe, P.; Liu, Z. K.; Moon, R. J.; Zavattieri, P. D. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: A first-principles investigation. Modell. Simul. Mater. Sci. Eng. 2014, 22, 085012.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52172046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brakat, A., Zhu, H. 3D-shaped 3D-continuously graphene cellulose (3D2GC) architecture. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6634-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6634-1

Keywords

Navigation