Log in

Lamellar quasi-solid electrolyte with nanoconfined deep eutectic solvent for high-performance lithium battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrolytes with high-efficiency lithium-ion transfer and reliable safety are of great importance for lithium battery. Although having superior ionic conductivity (10−3–10−2 S·cm−1), traditional liquid-state electrolytes always suffer from low lithium-ion transference number \(({t_{{\rm{L}}{{\rm{i}}^ + }}},\,\, < 0.4)\) and thus undesirable battery performances. Herein, the deep eutectic solvent (DES) is vacuum-filtered into the ∼ 1 nm interlayer channel of vermiculite (Vr) lamellar framework to fabricate a quasi-solid electrolyte (Vr-DES QSE). We demonstrate that the nanoconfinement effect of interlayer channel could facilitate the opening of solvation shell around lithium-ion. Meanwhile, the interaction from channel wall could inhibit the movement of anion. These enable high-efficiency lithium-ion transfer: 2.61 × 10−4 S·cm−1 at 25 °C. Importantly, the \({t_{{\rm{L}}{{\rm{i}}^ + }}}\) value reaches 0.63, which is 4.5 times of that of bulk DES, and much higher than most present liquid/quasi-solid electrolytes. In addition, Vr-DES QSE shows significantly improved interfacial stability with Li anode as compared with DES. The assembled Li symmetric cell can operate stably for 1000 h at 0.1 mA·cm−2. The lithium iron phosphate (LFP)∣Vr-DES QSE∣Li cell exhibits high capacity of 142.1 mAh·g−1 after 200 cycles at 25 °C and 0.5 C, with a capacity retention of 94.5%. The strategy of open solvation shell through nanoconfinement effect of lamellar framework may shed light on the development of advanced electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough, J. B. How we made the Li-ion rechargeable battery. Nat. Electron. 2018, 1, 204.

    Article  Google Scholar 

  3. Li, J. J.; Hu, H. M.; Fang, W. H.; Ding, J. W.; Yuan, D.; Luo, S. J.; Zhang, H. T.; Ji, X. Y. Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries. Adv. Funct. Mater. 2023, 33, 2303718.

    Article  CAS  Google Scholar 

  4. Yao, M.; Ruan, Q. Q.; Pan, S. S.; Zhang, H. T.; Zhang, S. J. An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 2023, 13, 2203640.

    Article  CAS  Google Scholar 

  5. Mishra, K.; Devi, N.; Siwal, S. S.; Zhang, Q. B.; Alsanie, W. F.; Scarpa, F.; Thakur, V. K. Ionic liquid-based polymer nanocomposites for sensors, energy, biomedicine, and environmental applications: Roadmap to the future. Adv. Sci. 2022, 9, 2202187.

    Article  CAS  Google Scholar 

  6. Jeoun, Y.; Kim, K.; Kim, S. Y.; Lee, S. H.; Huh, S. H.; Kim, S. H.; Huang, X.; Sung, Y. E.; Abruña, H. D.; Yu, S. H. Surface roughness-independent homogeneous lithium plating in synergetic conditioned electrolyte. ACS Energy Lett. 2022, 7, 2219–2227.

    Article  CAS  Google Scholar 

  7. Amanchukwu, C. V.; Yu, Z. A.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. J. Am. Chem. Soc. 2020, 142, 7393–7403.

    Article  CAS  PubMed  Google Scholar 

  8. Ruan, Q. Q.; Yao, M.; Yuan, D.; Dong, H. T.; Liu, J. X.; Yuan, X. D.; Fang, W. H.; Zhao, G. Y.; Zhang, H. T. Ionic liquid crystal electrolytes: Fundamental, applications and prospects. Nano Energy 2023, 106, 108087.

    Article  CAS  Google Scholar 

  9. Giffin, G. A. The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 2022, 13, 5250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu, Z.; Balsara, N. P.; Borodin, O.; Gewirth, A. A.; Hahn, N. T.; Maginn, E. J.; Persson, K. A.; Srinivasan, V.; Toney, M. F.; Xu, K. et al. Beyond local solvation structure: Nanometric aggregates in battery electrolytes and their effect on electrolyte properties. ACS Energy Lett. 2022, 7, 461–470.

    Article  CAS  Google Scholar 

  11. Zhou, P.; Zhang, X. K.; **ang, Y.; Liu, K. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries. Nano Res. 2023, 16, 8055–8071.

    Article  CAS  Google Scholar 

  12. Qiao, B.; Leverick, G. M.; Zhao, W.; Flood, A. H.; Johnson, J. A.; Shao-Horn, Y. Supramolecular regulation of anions enhances conductivity and transference number of lithium in liquid electrolytes. J. Am. Chem. Soc. 2018, 140, 10932–10936.

    Article  CAS  PubMed  Google Scholar 

  13. Nan, B.; Chen, L.; Rodrigo, N. D.; Borodin, O.; Piao, N.; **a, J. L.; Pollard, T.; Hou, S.; Zhang, J. X.; Ji, X. et al. Enhancing Li+ transport in NMC811 graphite lithium-ion batteries at low temperatures by using low-polarity-solvent electrolytes. Angew. Chem., Int. Ed. 2022, 61, e202205967.

    Article  CAS  Google Scholar 

  14. Xu, Y.; Yan, H. H.; Li, T.; Liu, Y.; Luo, J. M.; Li, W. Y.; Cui, X. Y.; Chen, L.; Yue, Q.; Kang, Y. J. Can carbon sponge be used as separator in Li metal batteries. Energy Storage Mater. 2021, 36, 108–114.

    Article  Google Scholar 

  15. Jiang, Y. X.; Song, Y. D.; Chen, X.; Wang, H. J.; Deng, L. J.; Yang, G. In situ formed self-healable quasi-solid hybrid electrolyte network coupled with eutectic mixture towards ultra-long cycle life lithium metal batteries. Energy Storage Mater. 2022, 52, 514–523

    Article  Google Scholar 

  16. Wang, Y. J.; Li, L. B.; Wei, Y. Y.; Xue, J.; Chen, H.; Ding, L.; Caro, J.; Wang, H. H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew. Chem., Int. Ed. 2017, 56, 8974–8980.

    Article  CAS  Google Scholar 

  17. Hu, C. Y.; Achari, A.; Rowe, P.; **ao, H.; Suran, S.; Li, Z.; Huang, K.; Chi, C.; Cherian, C. T.; Sreepal, V. et al. pH-de pendent water permeability switching and its memory in MoS2 membranes. Nature 2023, 616, 719–723

    Article  CAS  PubMed  Google Scholar 

  18. Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.

    Article  CAS  Google Scholar 

  19. Wang, J.; Zhou, H. J.; Li, S. Z.; Wang, L. Selective ion transport in two-dimensional lamellar nanochannel membranes. Angew. Chem., Int. Ed. 2023, 62, e202218321.

    Article  CAS  Google Scholar 

  20. Ding, L.; Wei, Y. Y.; Li, L. B.; Zhang, T.; Wang, H. H.; Xue, J.; Ding, L. X.; Wang, S. Q.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018, 9, 155.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jia, Z. M.; Li, X. F.; Zhang, J.; He, N. N.; Long, H. H.; Zou, Y. D.; Zhang, Y. D.; Jiang, B.; Qi, Y.; Li, Y. et al. Monodisperse covalent organic nanosheets by in-situ oxidation method for efficient ion/molecule separation. J. Membr. Sci. 2023, 683, 121783.

    Article  CAS  Google Scholar 

  22. Jia, W.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration. Nano Res. 2020, 13, 2973–2978.

    Article  CAS  Google Scholar 

  23. Sapkota, B.; Liang, W. T.; VahidMohammadi, A.; Karnik, R.; Noy, A.; Wanunu, M. High permeability sub-nanometre sieve composite MoS2 membranes. Nat. Commun. 2020, 11, 2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y. F.; Huang, J. J.; Liu, H.; Kou, W. J.; Dai, Y.; Dang, W.; Wu, W. J.; Wang, J. T.; Fu, Y. Z.; Jiang, Z. Y. Lamellar ionic liquid composite electrolyte for wide-temperature solid-state lithium-metal battery. Adv. Energy Mater. 2023, 13, 2300156.

    Article  CAS  Google Scholar 

  25. Wu, J. X.; Liang, Q. H.; Yu, X. L.; Lü, Q. F.; Ma, L. B.; Qin, X. Y.; Chen, G. H.; Li, B. H. Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective. Adv. Funct. Mater. 2021, 31, 2011102.

    Article  CAS  Google Scholar 

  26. Geng, L. S.; Wang, X. P.; Han, K.; Hu, P.; Zhou, L.; Zhao, Y. L.; Luo, W.; Mai, L. Q. Eutectic electrolytes in advanced metal-ion batteries. ACS Energy Lett. 2022, 7, 247–260.

    Article  CAS  Google Scholar 

  27. Zhang, J. N.; Wu, H.; Du, X. F.; Zhang, H.; Huang, L.; Sun, F.; Liu, T. T.; Tian, S. W.; Zhou, L. X.; Hu, S. J. et al. Smart deep eutectic electrolyte enabling thermally induced shutdown toward high-safety lithium metal batteries. Adv. Energy Mater. 2023, 13, 2202529.

    Article  CAS  Google Scholar 

  28. Zhang, C. K.; Zhang, L. Y.; Yu, G. H. Eutectic electrolytes as a promising platform for next-generation electrochemical energy storage. Acc. Chem. Res. 2020, 53, 1648–1659.

    Article  CAS  PubMed  Google Scholar 

  29. Wu, W. B.; Liang, Y. H.; Li, D. P.; Bo, Y. Y.; Wu, D.; Ci, L. J.; Li, M. Y.; Zhang, J. H. A competitive solvation of ternary eutectic electrolytes tailoring the electrode/electrolyte interphase for lithium metal batteries. ACS Nano 2022, 16, 14558–14568.

    Article  CAS  PubMed  Google Scholar 

  30. Shao, J. J.; Raidongia, K.; Koltonow, A. R.; Huang, J. X. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 2015, 6, 7602.

    Article  PubMed  Google Scholar 

  31. Boisset, A.; Menne, S.; Jacquemin, J.; Balducci, A.; Anouti, M. Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 20054–20063.

    Article  CAS  PubMed  Google Scholar 

  32. Boisset, A.; Jacquemin, J.; Anouti, M. Physical properties of a new deep eutectic solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochim. Acta 2013, 102, 120–126.

    Article  CAS  Google Scholar 

  33. Liang, Y. H.; Wu, W. B.; Cao, J. W.; Guo, R. T.; Cao, M. M.; Zhang, J. C.; Wang, M.; Yu, W.; Zhang, J. Stable long cycling of small molecular organic acid electrode materials enabled by nonflammable eutectic electrolyte. Small 2022, 18, 2104538.

    Article  CAS  Google Scholar 

  34. Liang, Y. H.; Wu, W. B.; Li, D. P.; Wu, H.; Gao, C. C.; Chen, Z. J.; Ci, L. J.; Zhang, J. H. Highly stable lithium metal batteries by regulating the lithium nitrate chemistry with a modified eutectic electrolyte. Adv. Energy Mater. 2022, 12, 2202493.

    Article  CAS  Google Scholar 

  35. Song, Y. L.; Yang, L. Y.; Li, J. W.; Zhang, M. Z.; Wang, Y. H.; Li, S. N.; Chen, S. M.; Yang, K.; Xu, K.; Pan, F. Synergistic dissociation-and-trap** effect to promote Li-ion conduction in polymer electrolytes via oxygen vacancies. Small 2021, 17, 2102039.

    Article  CAS  Google Scholar 

  36. Yu, L.; Yu, L.; Liu, Q.; Meng, T.; Wang, S.; Hu, X. L. Monolithic task-specific ionogel electrolyte membrane enables high-performance solid-state lithium-metal batteries in wide temperature range. Adv. Funct. Mater. 2022, 32, 2110653.

    Article  CAS  Google Scholar 

  37. Wang, S. M.; Chen, Y.; Fang, Q.; Huang, J. J.; Wang, X. F.; Chen, S. M.; Zhang, S. J. Facilitating uniform lithium deposition via nanoconfinement of free amide molecules in solid electrolyte complexion for lithium metal batteries. Energy Storage Mater. 2023, 54, 596–604.

    Article  CAS  Google Scholar 

  38. Wang, Z. Y.; Yang, L. S.; Dai, L. X.; Huang, Z. Y.; Wu, K. Y.; Liu, B. L. Scalable production of 2D minerals by polymer intercalation and adhesion for multifunctional applications. Small Methods 2023, 7, 2300529.

    Article  CAS  Google Scholar 

  39. Pan, F. S.; Li, Y.; Song, Y. M.; Wang, M. D.; Zhang, Y.; Yang, H.; Wang, H. J.; Jiang, Z. Y. Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations. J. Membr. Sci. 2020, 595, 117486.

    Article  Google Scholar 

  40. Li, X. Y.; Li, R. H.; Peng, K.; Fu, L. J.; Zhao, K. P.; Li, H. R.; Peng, J. H.; Wang, L. X. Interlayer functionalization of vermiculite derived silica with hierarchical layered porous structure for stable CO2 adsorption. Chem. Eng. J. 2022, 435, 134875.

    Article  CAS  Google Scholar 

  41. Chen, Y.; Yu, D. K.; Fu, L.; Wang, M.; Feng, D. R.; Yang, Y. Z.; Xue, X. M.; Wang, J. F.; Mu, T. C. The dynamic evaporation process of the deep eutectic solvent LiTf2N: N-methylacetamide at ambient temperature. Phys. Chem. Chem. Phys. 2019, 21, 11810–11821.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, C. Z.; Xu, N. K.; Huang, K.; Liu, B.; Zhang, P. H.; Yang, G.; Guo, H. L.; Bai, P.; Mintova, S. Emerging co-synthesis of dimethyl oxalate and dimethyl carbonate using Pd/silicalite-1 catalyst with synergistic interactions of Pd and silanols. Chem. Eng. J. 2023, 466, 143136.

    Article  CAS  Google Scholar 

  43. Huang, Z. J.; He, D. D.; Deng, W. H.; **, G. W.; Li, K.; Luo, Y. M. Illustrating new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation. Nat. Commun. 2023, 14, 100.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wu, L. S.; Hu, J. P.; Chen, S. J.; Yang, X. R.; Liu, L.; Foord, J. S.; Pobedinskas, P.; Haenen, K.; Hou, H. J.; Yang, J. K. Lithium nitrate mediated dynamic formation of solid electrolyte interphase revealed by in situ Fourier transform infrared spectroscopy. Electrochim. Acta 2023, 466, 142973.

    Article  CAS  Google Scholar 

  45. Liu, Z. E.; Hu, Z. W.; Jiang, X. A.; Wang, X. W.; Li, Z.; Chen, Z. J.; Zhang, Y.; Zhang, S. G. Metal-organic framework confined solvent ionic liquid enables long cycling life quasi-solid-state lithium battery in wide temperature range. Small 2022, 18, 2203011.

    Article  CAS  Google Scholar 

  46. Castillo, J.; Santiago, A.; Judez, X.; Garbayo, I.; Coca Clemente, J. A.; Morant-Miñana, M. C.; Villaverde, A.; González-Marcos, J. A.; Zhang, H.; Armand, M. et al. Safe, flexible, and high-performing gelpolymer electrolyte for rechargeable lithium metal batteries. Chem. Mater. 2021, 33, 8812–8821.

    Article  CAS  Google Scholar 

  47. Zhu, J. X.; He, S.; Tian, H. Y.; Hu, Y. M.; **n, C.; **e, X. X.; Zhang, L. P.; Gao, J.; Hao, S. M.; Zhou, W. D. et al. The influences of DMF content in composite polymer electrolytes on Li+-conductivity and interfacial stability with Li-metal. Adv. Funct. Mater. 2023, 33, 2301165.

    Article  CAS  Google Scholar 

  48. Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X. F.; Wang, T. Y.; Wang, Y. Z.; Kang, F. Y.; Li, B. H.; Wang, G. X. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 9134–9142.

    Article  CAS  Google Scholar 

  49. Zhou, X. Y.; Li, X. G.; Li, Z.; **e, H. X.; Fu, J. L.; Wei, L.; Yang, H.; Guo, X. Hybrid electrolytes with an ultrahigh Li-ion transference number for lithium-metal batteries with fast and stable charge/discharge capability. J. Mater. Chem. A 2021, 9, 18239–18246.

    Article  CAS  Google Scholar 

  50. Du, J. M.; Duan, X. R.; Wang, W. Y.; Li, G. C.; Li, C. H.; Tan, Y. C.; Wan, M. T.; Seh, Z. W.; Wang, L.; Sun, Y. M. Mitigating concentration polarization through acid-base interaction effects for long-cycling lithium metal anodes. Nano Lett. 2023, 23, 3369–3376.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from National Natural Science Foundation of China (No. U2004199), Joint Foundation for Science and Technology Research & Development Plan of Henan Province (Nos. 222301420003 and 232301420038), China Postdoctoral Science Foundation (No. 2022TQ0293), and Key Science and Technology Project of Henan Province (No. 221100240200-06). Center for advanced analysis and computational science, Zhengzhou University is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhirong Yang or Wenjia Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, J., Wu, K. et al. Lamellar quasi-solid electrolyte with nanoconfined deep eutectic solvent for high-performance lithium battery. Nano Res. 17, 6176–6183 (2024). https://doi.org/10.1007/s12274-024-6620-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6620-7

Keywords

Navigation