Log in

Single-atomic activation on ZnIn2S4 basal planes boosts photocatalytic hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The use of single-atom cocatalysts plays a crucial role in enhancing artificial photocatalysis, where the precise construction of stable and efficient single-atom configuration is essential but remains challenging. Here, we report a simple one-step hydrothermal method for preparing single-atomic Mo modified ZnIn2S4 (Mo-ZIS) nanosheets as a highly active photocatalytic hydrogen evolution (PHE) photocatalyst. The Mo substituting for portion of In atoms in ZIS nanosheets induces the spatial charge redistribution, which not only promotes the separation of photogenerated charge carriers but also optimizes the Gibbs free energy of adsorbing H* on S atoms at basal planes. As a result, Mo-ZIS exhibits an impressive PHE rate as high as 6.71 mmol·g−1·h−1, over 10 times that of the pristine ZIS, with an apparent quantum efficiency (AQE) up to 38.8% at 420 nm. This study gains insights into the coordination configuration and electronic modulation resulting from single-atomic decoration, providing mechanistic cognitions for the development of advanced photocatalysts via non-precious metal atomic modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  CAS  PubMed  Google Scholar 

  2. Lee, W. H.; Lee, C. W.; Cha, G. D.; Lee, B. H.; Jeong, J. H.; Park, H.; Heo, J.; Bootharaju, M. S.; Sunwoo, S. H.; Kim, J. H. et al. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nat. Nanotechnol. 2023, 18, 754–762.

    Article  CAS  PubMed  Google Scholar 

  3. Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, H.; Liu, W. X.; He, X.; Zhang, P.; Zhang, X. D.; **e, Y. An excitonic perspective on low-dimensional semiconductors for photocatalysis. J. Am. Chem. Soc. 2020, 142, 14007–14022.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, R. T.; Ren, Z. F.; Liang, Y.; Zhang, G. H.; Dittrich, T.; Liu, R. Z.; Liu, Y.; Zhao, Y.; Pang, S.; An, H. Y. et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 2022, 610, 296–301.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, Q. X.; Guo, Y.; Zhu, Y. F. Photocatalytic sacrificial H2 evolution dominated by micropore-confined exciton transfer in hydrogen-bonded organic frameworks. Nat. Catal. 2023, 6, 574–584.

    Article  CAS  Google Scholar 

  7. Zhu, B. C.; Sun, J.; Zhao, Y. Y.; Zhang, L. Y.; Yu, J. G. Construction of 2D S - scheme heterojunction photocatalyst. Adv. Mater. 2024, 36, 2310600.

    Article  CAS  Google Scholar 

  8. Luo, Z. P.; Chen, X. W.; Hu, Y. Y.; Chen, X.; Lin, W.; Wu, X. F.; Wang, X. C. Side-chain molecular engineering of triazole-based donor-acceptor polymeric photocatalysts with strong electron push-pull interactions. Angew. Chem., Int. Ed. 2023, 62, e202304875.

    Article  CAS  Google Scholar 

  9. Yang, X. T.; Cui, J. P.; Lin, L. X.; Bian, A.; Dai, J.; Du, W.; Guo, S. Y.; Hu, J. G.; Xu, X. Y. Enhanced charge separation in nanoporous BiVO4 by external electron transport layer boosts solar water splitting. Adv. Sci. 2024, 11, 2305567.

    Article  CAS  Google Scholar 

  10. Shen, Y.; Ren, C. J.; Zheng, L. R.; Xu, X. Y.; Long, R.; Zhang, W. Q.; Yang, Y.; Zhang, Y. C.; Yao, Y. F.; Chi, H. Q. et al. Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2. Nat. Commun. 2023, 14, 1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble - metal - alternative co - catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.

    Article  Google Scholar 

  12. Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

    Article  CAS  PubMed  Google Scholar 

  13. Li, R. G.; Li, C. Photocatalytic water splitting on semiconductor-based photocatalysts. Adv. Catal. 2017, 60, 1–57.

    Article  Google Scholar 

  14. Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Nat. Sci. Rev. 2018, 5, 673–689.

    Article  CAS  Google Scholar 

  15. Huang, P. P.; Huang, J. H.; Pantovich, S. A.; Carl, A. D.; Fenton, T. G.; Caputo, C. A.; Grimm, R. L.; Frenkel, A. I.; Li, G. H. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 2018, 140, 16042–16047.

    Article  CAS  PubMed  Google Scholar 

  16. Shi, X. W.; Dai, C.; Wang, X.; Hu, J. Y.; Zhang, J. Y.; Zheng, L. X.; Mao, L.; Zheng, H. J.; Zhu, M. S. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding, C.; Lu, X. X.; Tao, B.; Yang, L. Q.; Xu, X. Y.; Tang, L. Q.; Chi, H. Q.; Yang, Y.; Meira, D. M.; Wang, L. et al. Interlayer spacing regulation by single-atom indiumδ+-N4 on carbon nitride for boosting CO2/CO photo-conversion. Adv. Funct. Mater. 2023, 33, 2302824.

    Article  CAS  Google Scholar 

  18. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  CAS  Google Scholar 

  19. Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

    Article  CAS  PubMed  Google Scholar 

  20. Hejazi, S.; Mohajernia, S.; Osuagwu, B.; Zoppellaro, G.; Andryskova, P.; Tomanec, O.; Kment, S.; Zbožil, R.; Schmuki, P. On the controlled loading of single platinum atoms as a Co-catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv. Mater. 2020, 32, 1908505.

    Article  CAS  Google Scholar 

  21. Zhou, P.; Li, N.; Chao, Y. G.; Zhang, W. Y.; Lv, F.; Wang, K.; Yang, W. X.; Gao, P.; Guo, S. J. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem., Int. Ed. 2019, 58, 14184–14188.

    Article  CAS  Google Scholar 

  22. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  23. Cheng, N. C.; Zhang, L.; Doyle-Davis, K.; Sun, X. L. Single-atom catalysts: From design to application. Electrochem. Energy Rev. 2019, 2, 539–573.

    Article  Google Scholar 

  24. Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; **ong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

    Article  CAS  PubMed  Google Scholar 

  25. Sun, B. J.; Bu, J. Q.; Chen, X. Y.; Fan, D. G.; Li, S. W.; Li, Z. Z.; Zhou, W.; Du, Y. C. In-situ interstitial zinc do**-mediated efficient charge separation for ZnIn2S4 nanosheets visible-light photocatalysts towards optimized overall water splitting. Chem. Eng. J. 2022, 435, 135074.

    Article  CAS  Google Scholar 

  26. Yang, R. J.; Fan, Y. Y.; Zhang, Y. F.; Mei, L.; Zhu, R. S.; Qin, J. Q.; Hu, J. G.; Chen, Z. X.; Ng, Y. H.; Voiry, D. et al. 2D transition metal dichalcogenides for photocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202218016.

    Article  CAS  Google Scholar 

  27. Yang, H. C.; Cao, R. Y.; Sun, P. X.; Yin, J. M.; Zhang, S. W.; Xu, X. J. Constructing electrostatic self-assembled 2D/2D ultra-thin ZnIn2S4/protonated g-C3N4 heterojunctions for excellent photocatalytic performance under visible light. Appl. Catal. B: Environ. 2019, 256, 117862.

    Article  CAS  Google Scholar 

  28. Yang, R. J.; Mei, L.; Fan, Y. Y.; Zhang, Q. Y.; Zhu, R. S.; Amal, R.; Yin, Z. Y.; Zeng, Z. Y. ZnIn2S4-based photocatalysts for energy and environmental applications. Small Methods 2021, 5, 2100887.

    Article  CAS  Google Scholar 

  29. Zhu, J. F.; Bi, Q. Y.; Tao, Y. H.; Guo, W. Y.; Fan, J. C.; Min, Y. L.; Li, G. S. Mo-modified ZnIn2S4@NiTiO3 S-scheme heterojunction with enhanced interfacial electric field for efficient visible-light-driven hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2213131.

    Article  CAS  Google Scholar 

  30. Shi, X. W.; Mao, L.; Dai, C.; Yang, P.; Zhang, J. Y.; Dong, F. Y.; Zheng, L. X.; Fujitsuka, M.; Zheng, H. J. Inert basal plane activation of two-dimensional ZnIn2S4 via Ni atom do** for enhanced Co-catalyst free photocatalytic hydrogen evolution. J. Mater. Chem. A 2020, 8, 13376–13384.

    Article  CAS  Google Scholar 

  31. Shi, X. W.; Mao, L.; Yang, P.; Zheng, H. J.; Fujitsuka, M.; Zhang, J. Y.; Majima, T. Ultrathin ZnIn2S4 nanosheets with active (110) facet exposure and efficient charge separation for cocatalyst free photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 265, 118616.

    Article  CAS  Google Scholar 

  32. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    Article  CAS  PubMed  Google Scholar 

  33. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trap** of atoms. Nat. Catal. 2018, 1, 781–786.

    Article  CAS  Google Scholar 

  34. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2015, 15, 48–53.

    Article  PubMed  Google Scholar 

  35. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimtic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  CAS  PubMed  Google Scholar 

  36. Yoshida, H.; Pan, Z. H.; Shoji, R.; Nandal, V.; Matsuzaki, H.; Seki, K.; Lin, L. H.; Kaneko, M.; Fukui, T.; Yamashita, K. et al. An oxysulfide photocatalyst evolving hydrogen with an apparentquantum efficiency of 30% under visible light. Angew. Chem., Int. Ed. 2023, 62, e202312938.

    Article  CAS  Google Scholar 

  37. Qiu, B. C.; Huang, P.; Lian, C.; Ma, Y. X.; **ng, M. Y.; Liu, H. L.; Zhang, J. L. Realization of all-in-one hydrogen-evolving photocatalysts via selective atomic substitution. Appl. Catal. B: Environ. 2021, 298, 120518.

    Article  CAS  Google Scholar 

  38. Wang, Y. J.; Huang, W. J.; Guo, S. H.; **n, X.; Zhang, Y. Z.; Guo, P.; Tang, S. W.; Li, X. H. Sulfur-deficient ZnIn2S4/oxygen-deficient WO3 hybrids with carbon layer bridges as a novel photothermal/photocatalytic integrated system for Z-scheme overall water splitting. Adv. Energy Mater. 2021, 11, 2102452.

    Article  CAS  Google Scholar 

  39. **, Q.; **e, F. X.; Liu, J. X.; Zhang, X. C.; Wang, J. C.; Wang, Y. W.; Wang, Y. F.; Li, H. F.; Yu, Z. B.; Sun, Z. J. et al. In situ formation ZnIn2S4/Mo2TiC2 Schottky junction for accelerating photocatalytic hydrogen evolution kinetics: Manipulation of local coordination and electronic structure. Small 2023, 19, 2300717

    Article  CAS  Google Scholar 

  40. Li, C. X.; Liu, X. T.; Ding, G. X.; Huo, P. W.; Yan, Y.; Yan, Y. S.; Liao, G. F. Interior and surface synergistic modifications modulate the SnNb2O6/Ni-doped ZnIn2S4 S-scheme heterojunction for efficient photocatalytic H2 evolution. Inorg. Chem. 2022, 61, 4681–4689.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, S.; Du, X.; Yao, C. H.; Cai, Y. F.; Ma, H. Y.; Jiang, B. J.; Ma, J. S- scheme heterojunction/Schottky junction tandem synergistic effect promotes visible-light-driven catalytic activity. Nano Res. 2023, 16, 2152–2162.

    Article  CAS  Google Scholar 

  42. Zhang, G. P.; Li, X. X.; Wang, M. M.; Li, X. Q.; Wang, Y. R.; Huang, S. T.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H. et al. 2D/2D hierarchical Co3O4/ZnIn2S4 heterojunction with robust built-in electric field for efficient photocatalytic hydrogen evolution. Nano Res. 2023, 16, 6134–6141

    Article  CAS  Google Scholar 

  43. Su, H.; Lou, H. M.; Zhao, Z. P.; Zhou, L.; Pang, Y. X.; **e, H. J.; Rao, C.; Yang, D. J.; Qiu, X. Q. In-situ Mo doped ZnIn2S4 wrapped MoO3 S-scheme heterojunction via Mo–S bonds to enhance photocatalytic HER. Chem. Eng. J. 2022, 430, 132770.

    Article  CAS  Google Scholar 

  44. Tang, C. X.; Bao, T. F.; Li, S. M.; Wang, X. Y.; Rao, H.; She, P.; Qin, J. S. Bioinspired 3D penetrating structured micro-mesoporous NiCoFe-LDH@ZnIn2S4 Z-scheme heterojunction for simultaneously photocatalytic H2 evolution coupled with benzylamine oxidation. Appl. Catal. B: Environ. 2024, 342, 123384.

    Article  CAS  Google Scholar 

  45. Yang, R. J.; Chen, Q. Q.; Ma, Y. Y.; Zhu, R. S.; Fan, Y. Y.; Huang, J. Y.; Niu, H. N.; Dong, Y.; Li, D.; Zhang, Y. F. et al. Highly efficient photocatalytic hydrogen evolution and simultaneous formaldehyde degradation over Z-scheme ZnIn2S4-NiO/BiVO4 hierarchical heterojunction under visible light irradiation. Chem. Eng. J. 2021, 423, 130164.

    Article  CAS  Google Scholar 

  46. Yang, R. J.; Fan, Y. Y.; Hu, J. G.; Chen, Z. X.; Shin, H. S.; Voiry, D.; Wang, Q.; Lu, Q. Y.; Yu, J. C.; Zeng, Z. Y. Photocatalysis with atomically thin sheets. Chem. Soc. Rev. 2023, 52, 7687–7706.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos 11974303 and 12074332), the Qinglan Project (No. 337050073) of Jiangsu Province, the High-End Talent Program (No. 137080210), the Yangzhou University Interdisciplinary Research Project of Chemistry Discipline (No. yzuxk202014), and the Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University (No. YZ2020263).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiying Guo or **aoyong Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Wang, Y., Lin, L. et al. Single-atomic activation on ZnIn2S4 basal planes boosts photocatalytic hydrogen evolution. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6617-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6617-2

Keywords

Navigation