Log in

Double-kill contribution of high-roughness high-density porous carbon electrodes to mechanically self-sensing supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Impact detecting and counting are fundamental functions of fuses used in hard target penetration weapons. However, detection failure caused by battery breakdown in high-g acceleration environments poses a vulnerability for such weapons. This paper introduces a novel supercapacitor that combines energy storage and high-g impact detection, called self-sensing supercapacitor. By deliberately inducing a transient soft short-circuit during shock in the supercapacitor, it is possible to detect external impact by its transient voltage drop. To realize this concept, firstly, by introducing the contact theory and force-induced percolation model, the electrode strength and roughness are found to have key impacts on the formation of soft circuits. Subsequently, to meet the needs for sensitivity and capacity, a high-density porous carbon (HDPC) that combines high mechanical strength and porosity, is selected as a suitable candidate based on the analysis results. Furthermore, a two-step curing method is proposed to prepare the high-roughness HDPC (HRHDPC) electrode and to assemble the self-sensing supercapacitor. Due to the rich specific surface of the electrodes and the high surface strength and roughness conducive to the formation of transient soft short circuits, the self-sensing supercapacitor not only possesses an excellent specific capacitance (171 F/g at 0.5 A/g) but also generates significant voltage response signals when subjected to high-g impacts ranging from 8000g to 31,000g. Finally, the self-sensing supercapacitor is applied to compose a successive high-g impact counting system and compared to traditional solutions (sensors and tantalum capacitors) in the military fuzes. The results show that the self-sensing supercapacitor-based system exhibits advantages in terms of size, power consumption, and counting accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, K. R.; Wang, X. F.; Li, R.; Zhang, H.; You, Z. Theoretical study and applications of self-sensing supercapacitors under extreme mechanical effects. Extreme Mech. Lett. 2019, 26, 53–60.

    Article  Google Scholar 

  2. Roh, H. D.; Deka, B. K.; Park, H. W.; Park, Y. B. Multifunctional composite as a structural supercapacitor and self-sensing sensor using NiCo2O4 nanowires and ionic liquid. Compos. Sci. Technol. 2021, 213, 108833.

    Article  CAS  Google Scholar 

  3. Wang, R.; Qian, J. Y.; Wei, T.; Huang, H. J. Integrated closed cooling system for high-power chips. Case Stud. Therm. Eng. 2021, 26, 100954.

    Article  Google Scholar 

  4. Hempel, M.; Schroeder, V.; Park, C.; Koman, V. B.; Xue, M. T.; McVay, E.; Spector, S.; Dubey, M.; Strano, M. S.; Park, J. et al. SynCells: A 60 · 60 µm2 electronic platform with remote actuation for sensing applications in constrained environments. ACS Nano 2021, 15, 8803–8812.

    Article  CAS  PubMed  Google Scholar 

  5. Ma, J. C.; Quhe, R.; Zhang, W. L.; Yan, Y. P.; Tang, H. M.; Qu, Z.; Cheng, Y. P.; Schmidt, O. G.; Zhu, M. S. Zn microbatteries explore ways for integrations in intelligent systems. Small 2023, 19, 2300230.

    Article  CAS  Google Scholar 

  6. Yu, L. H.; Yi, Y. Y.; Yao, T.; Song, Y. Z.; Chen, Y. R.; Li, Q. C.; **a, Z.; Wei, N.; Tian, Z. N.; Nie, B. Q. et al. All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 2019, 12, 331–338.

    Article  CAS  Google Scholar 

  7. Sun, L. M.; Wang, X. H.; Zhang, K.; Zou, J. P.; Yan, Z. Y.; Hu, X. N.; Zhang, Q. Bi-functional electrode for UV detector and supercapacitor. Nano Energy 2015, 15, 445–452.

    Article  CAS  Google Scholar 

  8. Wei, N.; Ruan, L. M.; Zeng, W.; Liang, D.; Xu, C.; Huang, L. S.; Zhao, J. L. Compressible supercapacitor with residual stress effect for sensitive elastic-electrochemical stress sensor. ACS Appl. Mater. Interfaces 2018, 10, 38057–38065.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, Y.; Cao, J. Y.; Zhang, Y.; Peng, H. S. Gradually crosslinking carbon nanotube array in mimicking the beak of giant squid for compression-sensing supercapacitor. Adv. Funct. Mater. 2020, 30, 1902971.

    Article  CAS  Google Scholar 

  10. Dong, X. C.; Cao, Y. F.; Wang, J.; Chan-Park, M. B.; Wang, L. H.; Huang, W.; Chen, P. Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2012, 2, 4364–4369.

    Article  CAS  Google Scholar 

  11. Choi, C.; Lee, J. M.; Kim, S. H.; Kim, S. J.; Di, J. T.; Baughman, R. H. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 2016, 16, 7677–7684.

    Article  CAS  PubMed  Google Scholar 

  12. Afroze, J. D.; Tong, L. Y.; Abden, M. J.; Chen, Y. Multifunctional hierarchical graphene-carbon fiber hybrid aerogels for strain sensing and energy storage. Adv. Compos. Hybrid Mater. 2023, 6, 18.

    Article  CAS  Google Scholar 

  13. Wei, N.; Zhu, C. Q.; Lu, S. B.; Liu, C. Y.; Li, Y.; Wang, L. N. Sensitive compressible electrochemical-driven asymmetric supercapacitor-type sensor based on cross-linked honeycomb naofoam and resilient graphene aerogel framework. J. Alloys Compd. 2021, 869, 159379.

    Article  CAS  Google Scholar 

  14. Zhang, C. J.; Li, H.; Huang, A. M.; Zhang, Q.; Rui, K.; Lin, H. J.; Sun, G. Z.; Zhu, J. X.; Peng, H. S.; Huang, W. Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor. Small 2019, 15, 1805493.

    Article  Google Scholar 

  15. Song, Y.; Chen, H. T.; Chen, X. X.; Wu, H. X.; Guo, H.; Cheng, X. L.; Meng, B.; Zhang, H. X. All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor. Nano Energy 2018, 53, 189–197.

    Article  CAS  Google Scholar 

  16. Wang, Q. F.; Liu, J. H.; Ran, X.; Zhang, D. H.; Shen, G. Z.; Miao, M. H. High-performance flexible self-powered strain sensor based on carbon nanotube/ZnSe/CoSe2 nanocomposite film electrodes. Nano Res. 2022, 15, 170–178.

    Article  CAS  Google Scholar 

  17. Du, X. J.; Tian, M. W.; Sun, G. S.; Li, Z. Q.; Qi, X. J.; Zhao, H. T.; Zhu, S. F.; Qu, L. J. Self-powered and self-sensing energy textile system for flexible wearable applications. ACS Appl. Mater. Interfaces 2020, 12, 55876–55883.

    Article  CAS  PubMed  Google Scholar 

  18. Wen, M. C.; Yu, X. W.; Yang, C.; Qiu, J. H.; Zang, L. M. Compressible zinc-ion hybrid supercapacitor and piezoresistive sensor based on reduced graphene oxide/polypyrrole modified melamine sponge. Polym. Compos. 2023, 44, 3843–3855.

    Article  CAS  Google Scholar 

  19. Guo, H. Y.; Zhang, J. M.; Liu, J.; Hu, Y. F.; Shi, W. Q. Generation of a scenario library for testing driver-automation cooperation safety under cut-in working conditions. Green Energy Intell. Transp. 2022, 1, 100004.

    Article  Google Scholar 

  20. Zhang, H.; Liu, C.; Zhao, W. Z. Segmented trajectory planning strategy for active collision avoidance system. Green Energy and Intell. Transp. 2022, 1, 100002.

    Article  Google Scholar 

  21. Huang, J.; Dai, K. R.; Yin, Y. J.; Chen, Z. R.; Wang, X. F.; You, Z. Generalized modeling and experimental research on the transient response of supercapacitors under compressive mechanical loads. Nano Res. 2023, 16, 6859–6869.

    Article  CAS  Google Scholar 

  22. Li, Q.; Chen, A.; Wang, D. H.; Pei, Z. X.; Zhi, C. Y. “Soft shorts” hidden in zinc metal anode research. Joule 2022, 6, 273–279

    Article  Google Scholar 

  23. Zhang, W. Y.; Zhang, Z. H.; Niu, L. J.; Zhang, D. Z.; Zhang, Z. S. Frequency characteristic measurement of high-g accelerometers based on down-step response. IEEE Sens. J. 2023, 23, 7312–7319.

    Article  CAS  Google Scholar 

  24. Zhang, X. F.; Zhao, Y. L.; Duan, Z. Y.; Li, X. B. A high-g shock tester with one-level velocity amplifier. Meas. Sci. Technol. 2013, 24, 045901.

    Article  CAS  Google Scholar 

  25. Wang, H. C.; Zhou, R. C.; Li, D. H.; Zhang, L. R.; Ren, G. Z.; Wang, L.; Liu, J. H.; Wang, D. Y.; Tang, Z. H.; Lu, G. et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021, 15, 9690–9700.

    Article  CAS  PubMed  Google Scholar 

  26. Duan, Z. Y.; Zeng, Q. H.; Tang, D. Y.; Peng, Y. C. Theoretical and experimental study of the “ superelastic collision effects” used to excite high-g shock environment. Sci. Rep. 2023, 13, 2291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Persson, B. N. J. Theory of rubber friction and contact mechanics. J. Chem. Phys. 2001, 115, 3840–3861.

    Article  CAS  Google Scholar 

  28. Müser, M. H.; Dapp, W. B.; Bugnicourt, R.; Sainsot, P.; Lesaffre, N.; Lubrecht, T. A.; Persson, B. N. J.; Harris, K.; Bennett, A.; Schulze, K. et al. Meeting the contact-mechanics challenge. Tribol. Lett. 2017, 65, 118.

    Article  Google Scholar 

  29. Persson, B. N. J. On the use of surface roughness parameters. Tribol. Lett. 2023, 71, 29.

    Article  Google Scholar 

  30. Persson, B. N. J. Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 2001, 87, 116101.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, X. R.; Han, J. W.; Lv, X. H.; Lv, W.; Pan, Z. Z.; Luo, C.; Zhang, S. W.; Lin, Q. W.; Kang, F. Y.; Yang, Q. H. Dense yet highly ion permeable graphene electrodes obtained by capillary-drying of a holey graphene oxide assembly. J. Mater. Chem. A 2019, 7, 12691–12697.

    Article  CAS  Google Scholar 

  32. Li, P.; Li, H.; Han, D. L.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Lv, W.; Yang, Q. H. Packing activated carbons into dense graphene network by capillarity for high volumetric performance supercapacitors. Adv. Sci. 2019, 6, 1802355.

    Article  Google Scholar 

  33. Tao, Y.; **e, X. Y.; Lv, W.; Tang, D. M.; Kong, D. B.; Huang, Z. H.; Nishihara, H.; Ishii, T.; Li, B. H.; Golberg, D. et al. Towards ultrahigh volumetric capacitance: Graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 2013, 3, 2975.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang, J.; Dou, Q. Y.; Yang, C.; Zang, L. M.; Yan, X. B. Polyiodide shuttle inhibition in ethylene glycol-added aqueous electrolytes for high energy and long-term cyclability of zinc-iodine batteries. J. Mater. Chem. A 2023, 11, 3632–3639.

    Article  CAS  Google Scholar 

  35. Yao, B. W.; Chen, J.; Huang, L.; Zhou, Q. Q.; Shi, G. Q. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 2016, 28, 1623–1629.

    Article  CAS  PubMed  Google Scholar 

  36. Shang, Z.; An, X. Y.; Zhang, H.; Shen, M. X.; Baker, F.; Liu, Y. X.; Liu, L. Q.; Yang, J.; Cao, H. B.; Xu, Q. L. et al. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon 2020, 161, 62–70.

    Article  CAS  Google Scholar 

  37. Li, Z. G.; Wang, D. N.; Li, H. F.; Ma, M.; Zhang, Y.; Yan, Z. F.; Agnoli, S.; Zhang, G. X.; Sun, X. M. Single-atom Zn for boosting supercapacitor performance. Nano Res. 2022, 15, 1715–1724.

    Article  CAS  Google Scholar 

  38. Shi, Y. B.; Zhang, J. J.; Jiao, J. J.; Zhao, R.; Cao, H. L. Calibration analysis of high-g MEMS accelerometer sensor based on wavelet and wavelet packet denoising. Sensors 2021, 21, 1231.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dai, K. R.; Wang, X. F.; Yi, F.; Jiang, C.; Li, R.; You, Z. Triboelectric nanogenerators as self-powered acceleration sensor under high-g impact. Nano Energy 2018, 45, 84–93.

    Article  CAS  Google Scholar 

  40. Ma, M. X.; Li, R.; Niu, L. J. Evaluation index of disturbance superposition degree in multi-layer penetration acceleration signal. Acta Armamentarii 2022, 43, 20–28.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 52007084) and in part by the Young Elite Scientists Sponsorship Program by CAST (No. 2023QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keren Dai, Qingyun Dou or **aofeng Wang.

Electronic Supplementary Material

Supplementary material, approximately 27.6 MB.

12274_2024_6607_MOESM2_ESM.pdf

Double-kill contribution of high-roughness high-density porous carbon electrodes to mechanically self-sensing supercapacitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Liu, P., Wang, Y. et al. Double-kill contribution of high-roughness high-density porous carbon electrodes to mechanically self-sensing supercapacitors. Nano Res. 17, 6157–6167 (2024). https://doi.org/10.1007/s12274-024-6607-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6607-4

Keywords

Navigation