Log in

Fine-tuning growth in gold nanostructures from achiral 2D to chiral 3D geometries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Enriching the library of chiral plasmonic structures is of significant importance in advancing their applicability across diverse domains such as biosensing, nanophotonics, and catalysis. Here, employing triangle nanoplates as growth seeds, we synthesized a novel class of chiral-shaped plasmonic nanostructures through a wet chemical strategy with dipeptide as chiral inducers, including chiral tri-blade boomerangs, concave rhombic dodecahedrons, and nanoflowers. The structural diversity in chiral plasmonic nanostructures was elucidated through their continuous morphological evolution from two-dimensional to three-dimensional architectures. The fine-tuning of chiroptical properties was achieved by precisely manipulating crucial synthetic parameters such as the amount of chiral molecules, seeds, and gold precursor that significantly influenced chiral structure formation. The findings provide a promising avenue for enriching chiral materials with highly sophisticated structures, facilitating a fundamental understanding of the relationship between structural nuances and chiroptical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv, J. W.; Gao, X. Q.; Han, B.; Zhu, Y. F.; Hou, K.; Tang, Z. Y. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 2022, 6, 125–145.

    Article  PubMed  Google Scholar 

  2. Zhang, D. W.; Li, M.; Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331–1343.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, X. L.; Zang, S. Q.; Chen, X. Y. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem. Soc. Rev. 2020, 49, 2481–2503.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, Y.; Xu, J.; Wang, Y. W.; Chen, H. Y. Emerging chirality in nanoscience. Chem. Soc. Rev. 2013, 42, 2930–2962.

    Article  CAS  PubMed  Google Scholar 

  5. Esmaeili, M.; Akbari, E.; George, K.; Rezvan, G.; Taheri-Qazvini, N.; Sadati, M. Engineering nano/microscale chiral self-assembly in 3D printed constructs. Nano-Micro Lett. 2024, 76, 54.

    Article  Google Scholar 

  6. Kitzmann, W. R.; Freudenthal, J.; Reponen, A. P. M.; VanOrman, Z. A.; Feldmann, S. Fundamentals, advances, and artifacts in circularly polarized luminescence (CPL) spectroscopy. Adv. Mater. 2023, 35, 2302279.

    Article  CAS  Google Scholar 

  7. Gao, C.; Gu, Y. Y.; Zhao, Y.; Qu, L. T. Recent development of integrated systems of microsupercapacitors. Energy Mater. Adv. 2022, 2022, 9804891.

    Article  Google Scholar 

  8. Ha, M. J.; Kim, J. H.; You, M.; Li, Q.; Fan, C. H.; Nam, J. M. Multicomponent plasmonic nanoparticles: From heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 2019, 119, 12208–12278.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, D.; Ding, C. P.; Zheng, X. Y.; Ye, J. Z.; Chen, Z. H.; Li, J. H.; Yan, Z. J.; Jiang, J. H.; Huang, Y. J. Ultrasensitive and accurate diagnosis of urothelial cancer by plasmonic AuNRs-enhanced fluorescence of near-infrared Ag2S quantum dots. Rare Met. 2022, 47, 3828–3838.

    Article  Google Scholar 

  10. Lermusiaux, L.; Nisar, A.; Funston, A. M. Flexible synthesis of high-purity plasmonic assemblies. Nano Res. 2021, 14, 635–645.

    Article  CAS  Google Scholar 

  11. Cao, Z. L.; Gao, H.; Qiu, M.; **, W.; Deng, S. Z.; Wong, K. Y.; Lei, D. Y. Chirality transfer from sub-nanometer biochemical molecules to sub-micrometer plasmonic metastructures: Physiochemical mechanisms, biosensing, and bioimaging opportunities. Adv. Mater. 2020, 32, 1907151.

    Article  CAS  Google Scholar 

  12. Hentschel, M.; Schäferling, M.; Duan, X. Y.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pan, J. H.; Wang, X. Y.; Zhang, J. J.; Zhang, Q.; Wang, Q. B.; Zhou, C. Chirally assembled plasmonic metamolecules from intrinsically chiral nanoparticles. Nano Res. 2022, 15, 9447–9453.

    Article  CAS  Google Scholar 

  14. Zhu, D. Z.; Yan, J. F.; Liang, Z. W.; ** of Ag shell from Au@Ag nanoparticles. Rare Met. 2021, 40, 3454–3459.

    Article  CAS  Google Scholar 

  15. Zhao, Y.; Xu, C. L. DNA- based plasmonic heterogeneous nanostructures: Building, optical responses, and bioapplications. Adv. Mater. 2020, 32, 1907880.

    Article  CAS  Google Scholar 

  16. Kong, X. T.; Besteiro, L. V.; Wang, Z. M.; Govorov, A. O. Plasmonic chirality and circular dichroism in bioassembled and nonbiological systems: Theoretical background and recent progress. Adv. Mater. 2018, 32, 1801790.

    Article  Google Scholar 

  17. Gao, Q.; Tan, L. L.; Wen, Z. H.; Fan, D. D.; Hui, J. F.; Wang, P. P. Chiral inorganic nanomaterials: Harnessing chirality-dependent interactions with living entities for biomedical applications. Nano Res. 2023, 16, 11107–11124.

    Article  Google Scholar 

  18. Hao, C. L.; Wang, G. Y.; Chen, C.; Xu, J.; Xu, C. L.; Kuang, H.; Xu, L. G. Circularly polarized light-enabled chiral nanomaterials: From fabrication to application. Nano-Micro Lett. 2023, 15, 39.

    Article  CAS  Google Scholar 

  19. Guo, Z. L.; Yu, G.; Zhang, Z. G.; Han, Y. D.; Guan, G. J.; Yang, W. S.; Han, M. Y. Intrinsic optical properties and emerging applications of gold nanostructures. Adv. Mater. 2023, 35, 2206700.

    Article  CAS  Google Scholar 

  20. Zheng, G. C.; He, J. J.; Kumar, V.; Wang, S. L.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M.; Wong, K. Y. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 2021, 50, 3738–3754.

    Article  CAS  PubMed  Google Scholar 

  21. Abbas, S. U.; Li, J. J.; Liu, X.; Siddique, A.; Shi, Y. X.; Hou, M.; Yang, K.; Nosheen, F.; Cui, X. Y.; Zheng, G. C. et al. Chiral metal nanostructures: Synthesis, properties and applications. Rare Met. 2023, 42, 2489–2515.

    Article  CAS  Google Scholar 

  22. Zhou, S.; Li, J. H.; Lu, J.; Liu, H. H.; Kim, J. Y.; Kim, A.; Yao, L. H.; Liu, C.; Qian, C.; Hood, Z. D. et al. Chiral assemblies of pinwheel superlattices on substrates. Nature 2022, 612, 259–265.

    Article  CAS  PubMed  Google Scholar 

  23. Xu, L. G.; Wang, X. X.; Wang, W. W.; Sun, M. Z.; Choi, W. J.; Kim, J. Y.; Hao, C. L.; Li, S.; Qu, A. H.; Lu, M. R. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, J. P.; Boukouvala, C.; Lewis, G. R.; Ma, Y. C.; Chen, Y.; Ringe, E.; Shao, L.; Huang, Z. F.; Wang, J. F. Halide-assisted differential growth of chiral nanoparticles with threefold rotational symmetry. Nat. Commun. 2023, 14, 3783.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzán, L. M. Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced raman scattering. ACS Nano 2014, 8, 5833–5842.

    Article  CAS  PubMed  Google Scholar 

  27. Ni, B.; Zhou, J.; Stolz, L.; Cölfen, H. A facile and rational method to tailor the symmetry of Au@Ag nanoparticles. Adv. Mater. 2023, 35, 2209810.

    Article  CAS  Google Scholar 

  28. Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P. Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 2003, 107, 8717–8720.

    Article  CAS  Google Scholar 

  29. Choi, B. K.; Kim, J.; Luo, Z.; Kim, J.; Kim, J. H.; Hyeon, T.; Mehraeen, S.; Park, S.; Park, J. Shape transformation mechanism of gold nanoplates. ACS Nano 2023, 17, 2007–2018.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, H. D.; Liu, Y.; Yu, J. M.; Luo, Y. G.; Wang, L. L.; Yang, T.; Raktani, B.; Lee, H. Selectively regulating the chiral morphology of amino acid-assisted chiral gold nanoparticles with circularly polarized light. ACS Appl. Mater. Interfaces 2022, 14, 3559–3567.

    Article  CAS  PubMed  Google Scholar 

  31. Hong, J. W.; Lee, S. U.; Lee, Y. W.; Han, S. W. Hexoctahedral Au nanocrystals with high-index facets and their optical and surface-enhanced raman scattering properties. J. Am. Chem. Soc. 2012, 134, 4565–4568.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, H. E.; Yang, K. D.; Yoon, S. M.; Ahn, H. Y.; Lee, Y. Y.; Chang, H.; Jeong, D. H.; Lee, Y. S.; Kim, M. Y.; Nam, K. T. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano 2015, 9, 8384–8393.

    Article  CAS  PubMed  Google Scholar 

  33. Lin, H. X.; Lei, Z. C.; Jiang, Z. Y.; Hou, C. P.; Liu, D. Y.; Xu, M. M.; Tian, Z. Q.; **e, Z. X. Supersaturation-dependent surface structure evolution: From ionic, molecular to metallic micro/nanocrystals. J. Am. Chem. Soc. 2013, 135, 9311–9314.

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen, Q. N.; Wang, C. X.; Shang, Y. X.; Janssen, A.; **a, Y. N. Colloidal synthesis of metal nanocrystals: From asymmetrical growth to symmetry breaking. Chem. Rev. 2023, 123, 3693–3760.

    Article  CAS  PubMed  Google Scholar 

  35. Yang, F.; Feng, J.; Chen, J. X.; Ye, Z. Y.; Chen, J. H.; Hensley, D. K.; Yin, Y. D. Engineering surface strain for site-selective island growth of Au on anisotropic Au nanostructures. Nano Res. 2023, 16, 5873–5879.

    Article  CAS  Google Scholar 

  36. Cho, N. H.; Byun, G. H.; Lim, Y. C.; Im, S. W.; Kim, H.; Lee, H. E.; Ahn, H. Y.; Nam, K. T. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle. ACS Nano 2020, 14, 3595–3602.

    Article  CAS  PubMed  Google Scholar 

  37. Ni, B.; Mychinko, M.; Gómez-Graña, S.; Morales-Vidal, J.; Obelleiro-Liz, M.; Heyvaert, W.; Vila-Liarte, D.; Zhuo, X. L.; Albrecht, W.; Zheng, G. C. et al. Chiral seeded growth of gold nanorods into fourfold twisted nanoparticles with plasmonic optical activity. Adv. Mater. 2023, 35, 2208299.

    Article  CAS  Google Scholar 

  38. Zheng, Y. L.; Wang, Q.; Sun, Y. W.; Huang, J.; Ji, J.; Wang, Z. J.; Wang, Y. W.; Chen, H. Y. Chiral active surface growth via glutathione control. Adv. Opt. Mater. 2023, 11, 2202858.

    Article  CAS  Google Scholar 

  39. Huang, J. F.; Zhu, Y. H.; Liu, C. X.; Shi, Z.; Fratalocchi, A.; Han, Y. Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers. Nano Lett. 2016, 16, 617–623.

    Article  CAS  PubMed  Google Scholar 

  40. Yan, J.; Chen, Y. D.; Hou, S.; Chen, J. Q.; Meng, D. J.; Zhang, H.; Fan, H. Z.; Ji, Y. L.; Wu, X. C. Fabricating chiroptical starfruit-like Au nanoparticles via interface modulation of chiral thiols. Nanoscale 2017, 9, 11093–11102.

    Article  CAS  PubMed  Google Scholar 

  41. Ben-Moshe, A.; Wolf, S. G.; Bar Sadan, M.; Houben, L.; Fan, Z. Y.; Govorov, A. O.; Markovich, G. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 2014, 5, 4302.

    Article  CAS  PubMed  Google Scholar 

  42. Vishnevetskii, D. V.; Mekhtiev, A. R.; Perevozova, T. V.; Ivanova, A. I.; Averkin, D. V.; Khizhnyak, S. D.; Pakhomov, P. M. l-Cysteine as a reducing/cap**/gel-forming agent for the preparation of silver nanoparticle composites with anticancer properties. Soft Matter 2022, 18, 3031–3040.

    Article  CAS  PubMed  Google Scholar 

  43. Wu, F. X.; Li, F. H.; Tian, Y.; Lv, X. L.; Luan, X. X.; Xu, G. B.; Niu, W. X. Surface topographical engineering of chiral Au nanocrystals with chiral hot spots for plasmon-enhanced chiral discrimination. Nano Lett. 2023, 23, 8233–8240.

    Article  CAS  PubMed  Google Scholar 

  44. Su, A.; Wang, Q.; Huang, L. P.; Zheng, Y. L.; Wang, Y. W.; Chen, H. Y. Gold nanohexagrams via active surface growth under sole CTAB control. Nanoscale 2023, 15, 14858–14865.

    Article  CAS  PubMed  Google Scholar 

  45. Personick, M. L.; Mirkin, C. A. Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J. Am. Chem. Soc. 2013, 135, 18238–18247.

    Article  CAS  PubMed  Google Scholar 

  46. Shi, Y. F.; Lyu, Z. H.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; **a, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

    Article  CAS  PubMed  Google Scholar 

  47. Meena, S. K.; Celiksoy, S.; Schäfer, P.; Henkel, A.; Sönnichsen, C.; Sulpizi, M. The role of halide ions in the anisotropic growth of gold nanoparticles: A microscopic, atomistic perspective. Phys. Chem. Chem. Phys. 2016, 18, 13246–13254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, S. H.; Zheng, Y. L.; He, G. Y.; Zhang, M. M.; Li, H. Y.; Wang, Y. W.; Chen, H. Y. From flat to deep concave: An unusual mode of facet control. Chem. Commun. 2022, 58, 6128–6131.

    Article  CAS  Google Scholar 

  49. Zheng, Y. L.; Zong, J. P.; **ang, T.; Ren, Q.; Su, D. M.; Feng, Y. H.; Wang, Y. W.; Chen, H. Y. Turning weak into strong: On the CTAB-induced active surface growth. Sci. China Chem. 2022, 65, 1299–1305.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22001201 and 22075224) and the Science and Technology Agency of Shaanxi Province (No. 2022KWZ-21). We thank Mr. Jiawei Wang, Ms. Jiao Li, and Ms. Fuchun Tan at Instrumental Analysis Center of **’an Jiaotong University for structural and optical characterization. We also thank Engineer **ao**g Zhang at School of Physics, **’an Jiaotong University for transmission electron microscopy instrument support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-peng Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Chen, Z., **ao, C. et al. Fine-tuning growth in gold nanostructures from achiral 2D to chiral 3D geometries. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6582-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6582-9

Keywords

Navigation