Log in

Spin chiral anisotropy of diamagnetic chiral mesostructured In2O3 films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Spin chiral anisotropy (SChA) refers to the occurrence of different spin polarization in antipodal chiral structures. Herein, we report the SChA in diamagnetic chiral mesostructured In2O3 films (CMIFs) with manifestation of chirality-dependent magnetic circular dichroism (MCD) signals. CMIFs were grown on fluorine-doped tin dioxide conductive glass (FTO) substrates, which were synthesized via a hydrothermal route, with malic acid used as the symmetry-breaking agent. Two levels of chirality have been identified in CMIFs: primary nanoflakes with atomically twisted crystal lattices and secondary helical stacking of the nanoflakes. CMIFs exhibit chirality-dependent asymmetric MCD signals due to the different interactions of chirality-induced effective magnetic field and external magnetic field, which distinguish from the commonly observed external magnetic fielddependent symmetric MCD signals. These findings provide insights into spin manipulation of spin-paired diamagnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

    Article  CAS  PubMed  Google Scholar 

  2. Žutić, I.; Fabian, J.; Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

    Article  Google Scholar 

  3. Banerjee, N.; Smiet, C. B.; Smits, R. G. J.; Ozaeta, A.; Bergeret, F. S.; Blamire, M. G.; Robinson, J. W. A. Evidence for spin selectivity of triplet pairs in superconducting spin valves. Nat. Commun. 2014, 5, 3048.

    Article  CAS  PubMed  Google Scholar 

  4. Kharchenko, N. F.; Khrustalev, V. M.; Savitskiĭ, V. N. Magnetic field induced spin reorientation in the strongly anisotropic antiferromagnetic crystal LiCoPO4. Low Temp. Phys. 2010, 36, 558–564.

    Article  CAS  Google Scholar 

  5. Han, B.; Gao, X. Q.; Lv, J. W.; Tang, Z. Y. Magnetic circular dichroism in nanomaterials: New opportunity in understanding and modulation of excitonic and plasmonic resonances. Adv. Mater. 2020, 32, 1801491.

    Article  CAS  Google Scholar 

  6. Ray, K.; Ananthavel, S. P.; Waldeck, D. H.; Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science, 1999, 283, 814–816.

    Article  CAS  PubMed  Google Scholar 

  7. Yang, S. H.; Naaman, R.; Paltiel, Y.; Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 2021, 3, 328–343.

    Article  Google Scholar 

  8. Kim, Y. H.; Zhai, Y. X.; Lu, H. P.; Pan, X.; **ao, C. X.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M. et al. Chiral-induced spin selectivity enables a room-temperature spin lightemitting diode. Science 2021, 371, 1129–1133.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, Z. X.; Ai, J.; Bai, T.; Fang, Y. X.; Ding, K.; Duan, Y. Y.; Han, L.; Che, S. N. Photomagnetic-chiral anisotropy of chiral nanostructured gold films. Chem 2022, 8, 186–196.

    Article  CAS  Google Scholar 

  10. Ding, K.; Ai, J.; Chen, H.; Qu, Z. B.; Liu, P. Z.; Han, L.; Che, S. N.; Duan, Y. Y. Spin selectivity of chiral mesostructured diamagnetic BiOBr films. Nano Res. 2023, 16, 11444–11449.

    Article  CAS  Google Scholar 

  11. Bai, T.; Ai, J.; Duan, Y. Y.; Han, L.; Che, S. N. Spin selectivity of chiral mesostructured iron oxides with different magnetisms. Small 2022, 18, 2104509.

    Article  CAS  Google Scholar 

  12. Bai, T.; Ai, J.; Ma, J.; Duan, Y. Y.; Han, L.; Jiang, J. G.; Che, S. N. Resistance-chiral anisotropy of chiral mesostructured half-metallic Fe3O4 films. Angew. Chem., Int. Ed. 2021, 60, 20036–20041.

    Article  CAS  Google Scholar 

  13. Mishra, S.; Mondal, A. K.; Pal, S.; Das, T. K.; Smolinsky, E. Z. B.; Siligardi, G.; Naaman, R. Length-dependent electron spin polarization in oligopeptides and DNA. J. Phys. Chem. C 2020, 124, 10776–10782.

    Article  CAS  Google Scholar 

  14. Naaman, R.; Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187.

    Article  CAS  PubMed  Google Scholar 

  15. Giovanni, D.; Chong, W. K.; Dewi, H. A.; Thirumal, K.; Neogi, I.; Ramesh, R.; Mhaisalkar, S.; Mathews, N.; Sum, T. C. Tunable roomtemperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci. Adv. 2016, 2, e1600477.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zheng, R. J.; Zhang, M.; Sun, X.; Chen, R. P.; Sun, X. Perylene-3,4,9,10-tetracarboxylic acid accelerated light-driven water oxidation on ultrathin indium oxide porous sheets. Appl. Catal. B Environ. 2019, 254, 667–676.

    Article  CAS  Google Scholar 

  17. Qi, J.; Liu, J. F.; He, Y.; Chen, W.; Wang, C. Compression behavior and phase transition of cubic In2O3 nanocrystals. J. Appl. Phys. 2011, 109, 063520.

    Article  Google Scholar 

  18. Babu, S. H.; Kaleemulla, S.; Rao, N. M.; Krishnamoorthi, C. Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications. J. Magn. Magn. Mater. 2016, 416, 66–74.

    Article  CAS  Google Scholar 

  19. Narang, S. B.; Pubby, K. Nickel spinel ferrites: A review. J. Magn. Magn. Mater. 2021, 519, 167163.

    Article  CAS  Google Scholar 

  20. Hurd, C. M. Varieties of magnetic order in solids. Contemp. Phys. 1982, 23, 469–493.

    Article  CAS  Google Scholar 

  21. Mukherji, R.; Mathur, V.; Samariya, A.; Mukherji, M. Experimental and theoretical assessment of Fe-doped indium-oxide-based dilute magnetic semiconductors. Philos. Mag. 2019, 99, 2285–2302.

    Article  CAS  Google Scholar 

  22. Horvat, A.; Žitko, R.; Mravlje, J. Spin-orbit coupling in three-orbital Kanamori impurity model and its relevance for transition-metal oxides. Phys. Rev. B 2017, 96, 085122.

    Article  Google Scholar 

  23. Fujiyama, S.; Ohsumi, H.; Komesu, T.; Matsuno, J.; Kim, B. J.; Takata, M.; Arima, T.; Takagi, H. Two-dimensional Heisenberg behavior of Jeff = 1/2 isospins in the paramagnetic state of the spinorbital Mott insulator Sr2IrO4. Phys. Rev. Lett. 2012, 108, 247212.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, D.; Lei, W. W.; Qin, S.; Hou, L. T.; Liu, Z. W.; Cui, Q. L.; Chen, Y. Large-scale synthesis of hexagonal corundum-type In2O3 by ball milling with enhanced lithium storage capabilities. J. Mater. Chem. A 2013, 1, 5274–5278.

    Article  CAS  Google Scholar 

  25. Duan, Y. Y.; Han, L.; Zhang, J. L.; Asahina, S.; Huang, Z. H.; Shi, L.; Wang, B.; Cao, Y. Y.; Yao, Y.; Ma, L. G. et al. Optically active nanostructured ZnO films. Angew. Chem., Int. Ed. 2015, 54, 15170–15175.

    Article  CAS  Google Scholar 

  26. Gan, J. Y.; Lu, X. H.; Wu, J. H.; **e, S. L.; Zhai, T.; Yu, M. H.; Zhang, Z. S.; Mao, Y. C.; Wang, S. C. I.; Shen, Y. et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci. Rep. 2013, 3, 1021.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Robbie, K.; Broer, D. J.; Brett, M. J. Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature 1999, 399, 764–766.

    Article  CAS  Google Scholar 

  28. Khamkongkaeo, A.; Mothaneeyachart, N.; Sriwattana, P.; Boonchuduang, T.; Phetrattanarangsi, T.; Thongchai, C.; Sakkomolsri, B.; Pimsawat, A.; Daengsakul, S.; Phumying, S. et al. Ferromagnetism and diamagnetism behaviors of MgO synthesized via thermal decomposition method. J. Alloys Compd. 2017, 705, 668–674.

    Article  CAS  Google Scholar 

  29. Ando, K. Seeking room-temperature ferromagnetic semiconductors. Science 2006, 312, 1883–1885.

    Article  CAS  PubMed  Google Scholar 

  30. Stamokostas, G. L.; Fiete, G. A. Mixing of t2g-eg orbitals in 4d and 5d transition metal oxides. Phys. Rev. B 2018, 97, 085150.

    Article  CAS  Google Scholar 

  31. Zhang, B. W.; Ai, J.; Duan, Y. Y.; Bai, T.; Han, L.; Che, S. N. Chiral mesostructured hematite with temperature-independent magnetism due to spin confinement. Nano Res. 2024, 17, 2019–2024.

    Article  CAS  Google Scholar 

  32. Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. N. Chiral mesostructured NiO films with spin polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.

    Article  CAS  Google Scholar 

  33. Yang, P.; Deng, Q. Z.; Duan, Y. Y.; Liu, Z. X.; Fang, Y. X.; Han, L.; Che, S. N. Chiral nanostructured bimetallic Au-Ag films for enantiomeric discrimination. Adv. Mater. Interfaces 2022, 9, 2200369.

    Article  CAS  Google Scholar 

  34. Liu, Z. X.; Deng, Q. Z.; Han, L.; Che, S. N.; Duan, Y. Y. Spin selectivity-based enantiomeric discrimination by chiral nanostructured Au films. J. Phys. Chem. C 2023, 127, 9097–9104.

    Article  CAS  Google Scholar 

  35. Ozturk, S. F.; Sasselov, D. D. On the origins of life's homochirality: Inducing enantiomeric excess with spin-polarized electrons. Proc. Natl. Acad. Sci. USA 2022, 119, e2204765119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA1200301, S. A. C.), the National Natural Science Foundation of China (Nos. 21931008, S. A. C. and 21975184, Y. Y. D.), and Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University (No. 21TQ1400219).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Han, Zhibei Qu, Shunai Che or Yingying Duan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, T., Deng, Q., Chen, H. et al. Spin chiral anisotropy of diamagnetic chiral mesostructured In2O3 films. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6572-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6572-y

Keywords

Navigation