Log in

Sensitive humidity sensor based on moisture-driven energy generation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The emergence of novel self-powered humidity sensors has attracted considerable attention in the fields of smart electronic devices and personal healthcare. Herein, self-powered humidity sensors have been fabricated using a moisture-driven energy generation (MEG) device based on asymmetric tubular graphitic carbon nitride (g-CN) films prepared on anodized aluminum (AAO) template. At a relative humidity (RH) of 96%, the MEG device can provide an open-circuit voltage of 0.47 V and a short-circuit current of 3.51 µA, with a maximum output power of 0.08 µW. With inherent self-powered ability and humidity response via current variation, an extraordinary response of 1.78 × 106% (41%–96% RH) can be gained from the MEG device. The possible power generation mechanism is that g-CN/AAO heterostructure can form ion gradient and diffusion under the action of moisture to convert chemical potential into electrical potential, evoking a connaturally sensitive response to humidity. Self-powered respiration monitoring device based on the sensor is designed to monitor human movement (sitting, warming up, and running) and sleep status (normal, snoring, and apnea), maintaining excellent stability during cumulative 12-h respiration monitoring. This self-powered humidity sensing technology has promising potential for extensive integration into smart electronic and round-the-clock health monitoring devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, J.; Wang, H. Y.; Liu, T.; Wu, Q. N.; Ding, Y. H.; Ou, R. X.; Guo, C. G.; Liu, Z. Z.; Wang, Q. W. Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv. Funct. Mater. 2022, 32, 2204686.

    Article  CAS  Google Scholar 

  2. Huang, Y. F.; Yang, F.; Liu, S. H.; Wang, R. G.; Guo, J. H.; Ma, X. Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets. Research 2021, 2021, 9847285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, S. C.; Qian, G. C.; Ghanem, B.; Wang, Y. Q.; Shu, Z.; Zhao, X. F.; Yang, L.; Liao, X. Q.; Zheng, Y. J. Quantitative and real-time evaluation of human respiration signals with a shape-conformal wireless sensing system. Adv. Sci. 2022, 9, 2203460.

    Article  Google Scholar 

  4. Liang, Y. N.; Ding, Q. L.; Wang, H.; Wu, Z. X.; Li, J. Y.; Li, Z. Y.; Tao, K.; Gui, X. C.; Wu, J. Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 2022, 14, 183.

    Article  CAS  Google Scholar 

  5. Liu, H.; Qin, J. X.; Yang, X. G.; Lv, C. F.; Huang, W. T.; Li, F. K.; Zhang, C.; Wu, Y. R.; Dong, L.; Shan, C. X. Highly sensitive humidity sensors based on hexagonal boron nitride nanosheets for contactless sensing. Nano Res. 2023, 16, 10279–10286.

    Article  CAS  Google Scholar 

  6. Cai, J. G.; Lv, C.; Aoyagi, E.; Ogawa, S.; Watanabe, A. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 2018, 10, 23987–23996.

    Article  CAS  PubMed  Google Scholar 

  7. Su, Y. J.; Chen, G. R.; Chen, C. X.; Gong, Q. C.; **e, G. Z.; Yao, M. L.; Tai, H. L.; Jiang, Y. D.; Chen, J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 2021, 33, 2101262.

    Article  CAS  Google Scholar 

  8. Lan, L. Y.; Le, X. H.; Dong, H. Y.; **e, J.; Ying, Y. B.; **, J. F. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 2020, 165, 112360.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, D. Z.; Tong, J.; **a, B. K. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B Chem. 2014, 197, 66–72.

    Article  CAS  Google Scholar 

  10. Zhang, D. Z.; Xu, Z. Y.; Yang, Z. M.; Song, X. S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251.

    Article  CAS  Google Scholar 

  11. Shooshtari, L.; Rafiefard, N.; Barzegar, M.; Fardindoost, S.; Irajizad, A.; Mohammadpour, R. Self-powered humidity sensors based on SnS2 nanosheets. ACS Appl. Nano Mater. 2022, 5, 17123–17132.

    Article  CAS  Google Scholar 

  12. Hu, L. H.; Zhong, T. Y.; Long, Z. H.; Liang, S.; **ng, L. L.; Xue, X. Y. A self-powered sound-driven humidity sensor for wearable intelligent dehydration monitoring system. Nanotechnology 2023, 34, 195501.

    Article  Google Scholar 

  13. Su, Y. J.; Liu, Y. L.; Li, W. X.; **ao, X.; Chen, C. X.; Lu, H. J.; Yuan, Z.; Tai, H. L.; Jiang, Y. D.; Zou, J. et al. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater. Horiz. 2023, 10, 842–851.

    Article  CAS  PubMed  Google Scholar 

  14. Zou, Y.; Gai, Y. S.; Tan, P. C.; Jiang, D. J.; Qu, X. C.; Xue, J. T.; Ouyang, H.; Shi, B. J.; Li, L. L.; Luo, D. et al. Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam. Res. 2022, 2, 619–628.

    Article  Google Scholar 

  15. Yin, J.; Li, X. M.; Yu, J.; Zhang, Z. H.; Zhou, J. X.; Guo, W. L. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378–383.

    Article  CAS  PubMed  Google Scholar 

  16. Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, S. S.; Su, Y. D.; Xu, Y.; Wu, Q.; Zhang, Y. B.; Raschke, M. B.; Ren, M. X.; Chen, Y.; Wang, J. L.; Guo, W. L. et al. Mechanism of electric power generation from ionic droplet motion on polymer supported graphene. J. Am. Chem. Soc. 2018, 140, 13746–13752.

    Article  CAS  PubMed  Google Scholar 

  18. Fei, W. W.; Shen, C.; Zhang, S. Y.; Chen, H. Y.; Li, L. X.; Guo, W. L. Waving potential at volt level by a pair of graphene sheets. Nano Energy 2019, 60, 656–660.

    Article  CAS  Google Scholar 

  19. Jiao, S. P.; Li, Y.; Li, J. X.; Abrha, H.; Liu, M.; Cui, J. R.; Wang, J.; Dai, Y. X.; Liu, X. H. Graphene oxide as a versatile platform for emerging hydrovoltaic technology. J. Mater. Chem. A 2022, 10, 18451–18469.

    Article  CAS  Google Scholar 

  20. Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, H. H.; Huang, Y. X.; Zhao, F.; Yang, C.; Zhang, P. P.; Jiang, L.; Shi, G. Q.; Qu, L. T. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 2018, 11, 2839–2845.

    Article  CAS  Google Scholar 

  22. Wang, H. Y.; Sun, Y. L.; He, T. C.; Huang, Y. X.; Cheng, H. H.; Li, C.; **e, D.; Yang, P. F.; Zhang, Y. F.; Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 2021, 16, 811–819.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; **n, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

    Article  CAS  PubMed  Google Scholar 

  25. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329.

    Article  CAS  PubMed  Google Scholar 

  26. Arazoe, H.; Miyajima, D.; Akaike, K.; Araoka, F.; Sato, E.; Hikima, T.; Kawamoto, M.; Aida, T. An autonomous actuator driven by fluctuations in ambient humidity. Nat. Mater. 2016, 15, 1084–1089.

    Article  CAS  PubMed  Google Scholar 

  27. Cai, Z.; Song, Z. P.; Guo, L. Q. Thermo- and photoresponsive actuators with freestanding carbon nitride films. ACS Appl. Mater. Interfaces 2019, 11, 12770–12776.

    Article  CAS  PubMed  Google Scholar 

  28. **ao, K.; Chen, L.; Chen, R. T.; Heil, T.; Lemus, S. D. C.; Fan, F. T.; Wen, L. P.; Jiang, L.; Antonietti, M. Publisher correction: Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 2019, 10, 843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. **ao, K.; Giusto, P.; Wen, L. P.; Jiang, L.; Antonietti, M. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes. Angew. Chem., Int. Ed. 2018, 57, 10123–10126.

    Article  CAS  Google Scholar 

  30. Zhang, Y.; Yang, T. T.; Shang, K. D.; Guo, F. M.; Shang, Y. Y.; Chang, S. L.; Cui, L. C.; Lu, X. L.; Jiang, Z. B.; Zhou, J. et al. Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode. Nat. Commun. 2022, 13, 3484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rossi, M. P.; Gogotsi, Y.; Kornev, K. G. Deformation of carbon nanotubes by exposure to water vapor. Langmuir 2009, 25, 2804–2810.

    Article  CAS  PubMed  Google Scholar 

  32. Ou, H. H.; Lin, L. H.; Zheng, Y.; Yang, P. J.; Fang, Y. X.; Wang, X. C. Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 2017, 29, 1700008.

    Article  Google Scholar 

  33. Liu, Z. Y.; Wang, C. F.; Zhu, Z. L.; Lou, Q.; Shen, C. L.; Chen, Y. C.; Sun, J. L.; Ye, Y. L.; Zang, J. H.; Dong, L. et al. Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter 2021, 4, 1625–1638.

    Article  CAS  Google Scholar 

  34. Wang, Y. H.; Wang, K. P.; Dai, F. X.; Zhang, K.; Tang, H. F.; Wang, L.; **ng, J. A warm-white light-emitting diode based on single-component emitter aromatic carbon nitride. Nat. Commun. 2022, 13, 6495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qin, J. X.; Yang, X. G.; Shen, C. L.; Chang, Y.; Deng, Y.; Zhang, Z. F.; Liu, H.; Lv, C. F.; Li, Y. Z.; Zhang, C. et al. Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy 2022, 101, 107549.

    Article  CAS  Google Scholar 

  36. Su, Y. J.; **e, G. Z.; Wang, S.; Tai, H. L.; Zhang, Q. P.; Du, H. F.; Zhang, H. L.; Du, X. S.; Jiang, Y. D. Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sens.Actuators B Chem. 2017, 251, 144–152.

    Article  CAS  Google Scholar 

  37. Park, S. Y.; Kim, Y. H.; Lee, S. Y.; Sohn, W.; Lee, J. E.; Kim, D. H.; Shim, Y. S.; Kwon, K. C.; Choi, K. S.; Yoo, H. J. et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 2018, 6, 5016–5024.

    Article  CAS  Google Scholar 

  38. Li, B. L.; Tian, Q.; Su, H. X.; Wang, X. W.; Wang, T. E.; Zhang, D. Z. High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection. Sens. Actuators B: Chem. 2019, 299, 126973.

    Article  CAS  Google Scholar 

  39. Zhang, Z. Y.; Huang, J. D.; Yuan, Q.; Dong, B. Intercalated graphitic carbon nitride: A fascinating two-dimensional nanomaterial for an ultra-sensitive humidity nanosensor. Nanoscale 2014, 6, 9250–9256.

    Article  CAS  PubMed  Google Scholar 

  40. Yu, S. G.; Chen, C.; Zhang, H. Y.; Zhang, J.; Liu, J. Design of high sensitivity graphite carbon nitride/zinc oxide humidity sensor for breath detection. Sens. Actuators B: Chem. 2021, 332, 129536.

    Article  CAS  Google Scholar 

  41. Qin, J. X.; Yang, X. G.; Lv, C. F.; Li, Y. Z.; Chen, X. X.; Zhang, Z. F.; Zang, J. H.; Yang, X.; Liu, K. K.; Dong, L. et al. Humidity sensors realized via negative photoconductivity effect in nanodiamonds. J. Phys. Chem. Lett. 2021, 12, 4079–4084.

    Article  CAS  PubMed  Google Scholar 

  42. Xu, T.; Ding, X. T.; Cheng, H. H.; Han, G. Y.; Qu, L. T. Moisture-enabled electricity from hygroscopic materials: A new type of clean energy. Adv. Mater., in press, https://doi.org/10.1002/adma.202209661.

  43. Dai, X. H.; Liu, H.; Du, W. X.; Su, J.; Kong, L. S.; Ni, S. Q.; Zhan, J. H. Biocompatible carbon nitride quantum dots nanozymes with high nitrogen vacancies enhance peroxidase-like activity for broad-spectrum antibacterial. Nano Res. 2023, 16, 7237–7247.

    Article  CAS  Google Scholar 

  44. Wu, Y. Y.; Fu, C. F.; Huang, Q.; Zhang, P. P.; Cui, P.; Ran, J.; Yang, J. L.; Xu, T. W. 2D Heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano 2021, 12, 7586–7595.

    Article  Google Scholar 

  45. Guan, P. Y.; Zhu, R. B.; Hu, G. Y.; Patterson, R.; Chen, F. D.; Liu, C.; Zhang, S.; Feng, Z. H.; Jiang, Y.; Wan, T. et al. Recent development of moisture-enabled-electric nanogenerators. Small 2022, 18, 2204603.

    Article  CAS  Google Scholar 

  46. Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554.

    Article  CAS  PubMed  Google Scholar 

  47. Fan, K.; Liu, X. K.; Liu, Y.; Li, Y.; Liu, X. Y.; Feng, W.; Wang, X. Spontaneous power generation from broad-humidity atmospheres through heterostructured F/O-bonded graphene monoliths. Nano Energy 2022, 91, 106605.

    Article  CAS  Google Scholar 

  48. Sun, J. Y.; **u, K. H.; Wang, Z. Y.; Hu, N.; Zhao, L. B.; Zhu, H.; Kong, F. Z.; **ao, J. L.; Cheng, L. J.; Bi, X. Y. Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome. Nano Energy 2023, 108, 108215.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of this research by the National Natural Science Foundation of China (Nos. 12261141661, 12074348, U2004168, U21A2070, 62027816, and 12004345) and the Natural Science Foundation of Henan Province (No. 212300410078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Lou, **yang Zhu or Chong-**n Shan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Q., Lou, Q., Shen, C. et al. Sensitive humidity sensor based on moisture-driven energy generation. Nano Res. 17, 5578–5586 (2024). https://doi.org/10.1007/s12274-024-6499-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6499-3

Keywords

Navigation