Log in

Tailored architecture of composite electrolyte for all-solid-state sodium batteries with superior rate performance and cycle life

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Seeking for composite electrolytes reinforced all-solid-state sodium ion batteries with superior long lifespan and rate performance remains a great challenge. Here, a unique strategy to tailor the architecture of composite electrolyte via inserting polymer chains into a small quantity of sulfate sodium grafted C48H28O32Zr6 (UIOSNa) is proposed. The intimate contact between polymer segments and UIOSNa with limited pore size facilitates the anion immobilization of sodium salts and reduction of polymer crystallinity, thereby providing rapid ion conduction and reducing the adverse effect caused by the immigration of anions. The grafting of −SO3Na groups on fillers allows the free movement of more sodium ions to further improve \({t_{{\rm{N}}{{\rm{a}}^ + }}}\) and ionic conductivity. Consequently, even with the low content of UIOSNa fillers, a high ionic conductivity of 6.62 × 10−4 S·cm−1 at 60 °C and a transference number of 0.67 for the special designed composite electrolyte are achieved. The assembled all-solid-state sodium cell exhibits a remarkable rate performance for 500 cycles with 95.96% capacity retention at a high current rate of 4 C. The corresponding pouch cell can stably work for 1000 cycles with 97.03% capacity retention at 1 C, which is superior to most of the reported composite electrolytes in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

    Article  CAS  Google Scholar 

  2. Gong, Y.; Li, Y.; Li, Y.; Liu, M. Q.; Bai, Y.; Wu, C. Metal selenides anode materials for sodium ion batteries: Synthesis, modification, and application. Small 2023, 19, 2206194.

    Article  CAS  Google Scholar 

  3. Qin, Z. Y.; Zhang, Y.; Luo, W. Q.; Zhang, T.; Wang, T.; Ni, L. S.; Wang, H. J.; Zhang, N.; Liu, X. H.; Zhou, J. et al. A universal molten salt method for direct upcycling of spent Ni-rich cathode towards single-crystalline Li-rich cathode. Angew. Chem., Int. Ed. 2023, 62, e202218672.

    Article  CAS  Google Scholar 

  4. Fu, H. W.; Wang, Y. P.; Fan, G. Z.; Guo, S.; **e, X. S.; Cao, X. X.; Lu, B. A.; Long, M. Q.; Zhou, J.; Liang, S. Q. Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes. Chem. Sci. 2022, 13, 726–736.

    Article  CAS  PubMed  Google Scholar 

  5. Tian, Z. N.; Zou, Y. G.; Liu, G.; Wang, Y. Z.; Yin, J.; Ming, J.; Alshareef, H. N. Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 2022, 9, 2201207.

    Article  CAS  Google Scholar 

  6. Wang, Y. M.; Wang, Z. T.; Zheng, F.; Sun, J. G.; Oh, J. A. S.; Wu, T.; Chen, G. X.; Huang, Q.; Kotobuki, M.; Zeng, K. Y. et al. Ferroelectric engineered electrode-composite polymer electrolyte interfaces for all-solid-state sodium metal battery. Adv. Sci. 2022, 9, 2105849.

    Article  CAS  Google Scholar 

  7. Qiu, Y. S.; Xu, J. Challenges and prospects for room temperature solid-state sodium-sulfur batteries. Nano Res., in press, https://doi.org/10.1007/s12274-023-5993-3.

  8. Xu, X.; Gan, J. Y.; Huang, Y.; Liu, J. P.; Zhao, L.; Li, C. W.; Chen, J. P.; Li, X.; Wang, M. S.; Lin, Y. H. Gel polymer electrolyte combined lignocellulose with sodium alginate in lithium-ion battery. Funct. Mater. Lett. 2022, 15, 2251010.

    Article  CAS  Google Scholar 

  9. Qi, S. H.; Li, X.; Ma, J. M. Breakthrough on understanding the solid electrolyte interphase. Sci. Bull. 2022, 67, 1013–1014.

    Article  CAS  Google Scholar 

  10. Li, Z. P.; Zhu, K. J.; Liu, P.; Jiao, L. F. 3D confinement strategy for dendrite-free sodium metal batteries. Adv. Energy Mater. 2022, 12, 2100359

    Article  CAS  Google Scholar 

  11. Dirican, M.; Yan, C. Y.; Zhu, P.; Zhang, X. W. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng.: R: Rep. 2019, 136, 27–46.

    Article  Google Scholar 

  12. Yu, X. W.; Manthiram, A. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Stor. Mater. 2021, 34, 282–300.

    Google Scholar 

  13. He, K. Q.; Cheng, S. H. S.; Hu, J. Y.; Zhang, Y. Q.; Yang, H. W.; Liu, Y. Y.; Liao, W. C.; Chen, D. Z.; Liao, C. Z.; Cheng, X. et al. In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 12116–12123.

    Article  CAS  Google Scholar 

  14. Heubner, C.; Nikolowski, K.; Reuber, S.; Schneider, M.; Wolter, M.; Michaelis, A. Recent insights into rate performance limitations of Liion batteries. Batter. Supercaps 2021, 4, 268–285.

    Article  CAS  Google Scholar 

  15. Diederichsen, K. M.; McShane, E. J.; McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017, 2, 2563–2575.

    Article  CAS  Google Scholar 

  16. Lee, D.; Lee, H.; Song, T.; Paik, U. Toward high-rate performance solid-state batteries. Adv. Energy Mater. 2022, 12, 2200948.

    Article  CAS  Google Scholar 

  17. Fan, L. Z.; He, H. C.; Nan, C. W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019.

    Article  CAS  Google Scholar 

  18. Niu, W.; Chen, L.; Liu, Y. C.; Fan, L. Z. All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase. Chem. Eng. J. 2020, 384, 123233.

    Article  CAS  Google Scholar 

  19. Zhang, X. J.; Wang, X. C.; Liu, S.; Tao, Z. L.; Chen, J. A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries. Nano Res. 2018, 11, 6244–6251.

    Article  CAS  Google Scholar 

  20. Lai, H. J.; Lu, Y.; Zha, W. P.; Hu, Y. Y.; Zhang, Y.; Wu, X. W.; Wen, Z. Y. In situ generated composite gel polymer electrolyte with crosslinking structure for dendrite-free and high-performance sodium metal batteries. Energy Stor. Mater. 2023, 54, 478–487

    Google Scholar 

  21. Tai, Z. X.; Liu, Y. J.; Yu, Z. P.; Lu, Z. Y.; Bondarchuk, O.; Peng, Z. J.; Liu, L. F. Non-collapsing 3D solid-electrolyte interphase for high-rate rechargeable sodium metal batteries. Nano Energy 2022, 94, 106947.

    Article  CAS  Google Scholar 

  22. Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 2020, 7, 1903088.

    Article  CAS  Google Scholar 

  23. Hu, M. L.; Masoomi, M. Y.; Morsali, A. Template strategies with MOFs. Coord. Chem. Rev. 2019, 387, 415–435.

    Article  CAS  Google Scholar 

  24. Xue, W. D.; Sewell, C. D.; Zhou, Q. X.; Lin, Z. Q. Metal-organic frameworks for ion conduction. Angew. Chem., Int. Ed. 2022, 61, e202206512.

    Article  CAS  Google Scholar 

  25. Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

    Article  CAS  Google Scholar 

  26. Ye, Y. X.; Gong, L. S.; **ang, S. C.; Zhang, Z. J.; Chen, B. L. Metal-organic frameworks as a versatile platform for proton conductors. Adv. Mater. 2020, 32, 1907090.

    Article  CAS  Google Scholar 

  27. Duan, P.; Moreton, J. C.; Tavares, S. R.; Semino, R.; Maurin, G.; Cohen, S. M.; Schmidt-Rohr, K. Polymer infiltration into metal-organic frameworks in mixed-matrix membranes detected in situ by NMR. J. Am. Chem. Soc. 2019, 141, 7589–7595.

    Article  CAS  PubMed  Google Scholar 

  28. Kitao, T.; Zhang, Y. Y.; Kitagawa, S.; Wang, B.; Uemura, T. Hybridization of MOFs and polymers. Chem. Soc. Rev. 2017, 46, 3108–3133.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, R.; Wu, Y. X.; Liang, Z. B.; Gao, L.; **a, W.; Zhao, Y. S.; Zou, R. Q. Metal- organic frameworks for solid-state electrolytes. Energy Environ. Sci. 2020, 13, 2386–2403.

    Article  CAS  Google Scholar 

  30. Li, Z. L.; Wang, S. X.; Shi, J. K.; Liu, Y.; Zheng, S. Y.; Zou, H. Q.; Chen, Y. L.; Kuang, W. X.; Ding, K.; Chen, L. Y. et al. A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Stor. Mater. 2022, 47, 262–270.

    Google Scholar 

  31. Sun, C. C.; Yusuf, A.; Li, S. W.; Qi, X. L.; Ma, Y.; Wang, D. Y. Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes. Chem. Eng. J. 2021, 414, 128702.

    Article  CAS  Google Scholar 

  32. Du, L. L.; Zhang, B.; Deng, W.; Cheng, Y.; Xu, L.; Mai, L. Q. Hierarchically self-assembled MOF network enables continuous ion transport and high mechanical strength. Adv. Energy Mater. 2022, 12, 2200501.

    Article  CAS  Google Scholar 

  33. Zhang, C. K.; Zhang, S. Y.; Zhang, Y. G.; Wu, X. Y.; Lin, L.; Hu, X. C.; Wang, L. S.; Lin, J.; Sa, B.; Wei, G. Y. et al. Regulating Lewis acid-base interaction in poly (ethylene oxide)-based electrolyte to enhance the cycling stability of solid-state lithium metal batteries. Small Struct., in press, https://doi.org/10.1002/sstr.202300301.

  34. Han, F. D.; Westover, A. S.; Yue, J.; Fan, X. L.; Wang, F.; Chi, M. F.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. S. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 2019, 4, 187–196.

    Article  CAS  Google Scholar 

  35. Liu, C.; Zhu, F. Y.; Huang, Z. H.; Liao, W. C.; Guan, X.; Li, Y. C.; Chen, D. Z.; Lu, Z. G. An integrate and ultra-flexible solid-state lithium battery enabled by in situ polymerized solid electrolyte. Chem. Eng. J. 2022, 434, 134644.

    Article  CAS  Google Scholar 

  36. Ran, L. B.; Tao, S. W.; Gentle, I.; Luo, B.; Li, M.; Rana, M.; Wang, L. Z.; Knibbe, R. Stable interfaces in a sodium metal-free, solid-state sodium-ion battery with gradient composite electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 39355–39362.

    Article  CAS  PubMed  Google Scholar 

  37. Hiraoka, K.; Kato, M.; Kobayashi, T.; Seki, S. Polyether/Na3Zr2Si2PO12 composite solid electrolytes for all-solid-state sodium batteries. J. Phys. Chem. C 2020, 124, 21948–21956.

    Article  CAS  Google Scholar 

  38. Yu, X. W.; Xue, L. G.; Goodenough, J. B.; Manthiram, A. Ambient-temperature all-solid-state sodium batteries with a laminated composite electrolyte. Adv. Funct. Mater. 2021, 31, 2002144.

    Article  CAS  Google Scholar 

  39. Wu, J. F.; Guo, X. MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 2653–2659.

    Article  CAS  Google Scholar 

  40. Ogoshi, T.; Sueto, R.; Yagyu, M.; Kojima, R.; Kakuta, T.; Yamagishi, T. A.; Doitomi, K.; Tummanapelli, A. K.; Hirao, H.; Sakata, Y. et al. Molecular weight fractionation by confinement of polymer in one-dimensional pillar[5] arene channels. Nat. Commun. 2019, 10, 479.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Le Ouay, B.; Watanabe, C.; Mochizuki, S.; Takayanagi, M.; Nagaoka, M.; Kitao, T.; Uemura, T. Selective sorting of polymers with different terminal groups using metal-organic frameworks. Nat. Commun. 2018, 9, 3635.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ma, L. B.; Cui, J.; Yao, S. S.; Liu, X. M.; Luo, Y. S.; Shen, X. P.; Kim, J. K. Dendrite-free lithium metal and sodium metal batteries. Energy Stor. Mater. 2020, 27, 522–554.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Basic and Applied Basic Research Project of Guangdong Province (Nos. 2022A1515011438 and 2023A1515011055), Basic Research Project of the Science and Technology Innovation Commission of Shenzhen (No. JCYJ20220531101013028), and Key Project of Shenzhen Basic Research (No. JCYJ2022081800003006). The authors appreciate Instrumental Analysis Center of Shenzhen University (Lihu Campus) for providing equipment for material characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Liu.

Electronic Supplementary Material

12274_2023_6354_MOESM1_ESM.pdf

Tailored architecture of composite electrolyte for all-solid-state sodium batteries with superior rate performance and cycle life

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Jian, Z., Liao, X. et al. Tailored architecture of composite electrolyte for all-solid-state sodium batteries with superior rate performance and cycle life. Nano Res. 17, 4171–4180 (2024). https://doi.org/10.1007/s12274-023-6354-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6354-y

Keywords

Navigation