Log in

A harmonic-wave bio-thermal method for continuous monitoring skin thermal conductivity and capillary perfusion rate

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The revelation of thermal energy exchange mechanism of human body is challenging yet worthwhile, because it can clearly explain the changes in human symptoms and health status. Understanding, the heat transfer of the skin is significant because the skin is the foremost organ for the energy exchange between the human body and the environment. In order to diagnose the physiological conditions of human skin without causing any damage, it is necessary to use a non-invasive measurement technique by means of a conformal flexible sensor. The harmonic method can minimize the thermal-induced injury to the skin due to its low heat generating properties. A novel type of computational theory assessing skin thermal conductivity, blood perfusion rate of capillaries in the dermis, and superficial subcutaneous tissues was formed by combining the multi-medium thermal diffusion model and the bio-thermal model (Pennes equation). The skins of the hand back of six healthy subjects were measured. It was found that the results revealed no consistent changes in thermal conductivity were observed across genders and ages. The measured blood perfusion rates were within the range of human capillary flow. It was found that female subjects had a higher perfusion rate range (0.0058–0.0061 s−1) than male subjects (0.0032–0.0049 s−1), which is consistent with invasive medical studies about the gender difference in blood flow rates and stimulated effects in relaxation situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kluger, M. J.; Kozak, W.; Conn, C. A.; Leon, L. R.; Soszynski, D. Role of fever in disease. Ann. N. Y. Acad. Sci. 1998, 856, 224–233.

    Article  PubMed  Google Scholar 

  2. Kelly, G. S. Body temperature variability (Part 2): Masking influences of body temperature variability and a review of body temperature variability in disease. Altern. Med. Rev. 2007, 12, 49–62.

    PubMed  Google Scholar 

  3. Wright, K. P.; Hull, J. T.; Czeisler, C. A. Relationship between alertness, performance, and body temperature in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R1370–R1377.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, H. S.; Zhao, C. Q.; Liu, Z. W.; Yi, J. D.; Liu, X. M.; Ren, J. S.; Qu, X. G. A polyoxometalate-based pathologically activated assay for efficient bioorthogonal catalytic selective therapy. Angew. Chem., Int. Ed. 2023, 62, e202303989.

    Article  CAS  Google Scholar 

  5. Sugiura, T.; Matsuki, D.; Okajima, J.; Komiya, A.; Mori, S.; Maruyama, S.; Kodama, T. Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling. Nano Res. 2015, 8, 3842–3852.

    Article  CAS  Google Scholar 

  6. Liu, S.; Pan, X. T.; Liu, H. Y. Two- dimensional nanomaterials for photothermal therapy. Angew. Chem., Int. Ed. 2020, 59, 5890–5900.

    Article  CAS  Google Scholar 

  7. Bowman, H. F.; Balasubramaniam, T. A. A new technique utilizing thermistor probes for the measurement of thermal properties of biomaterials. Cryobiology 1976, 13, 572–580.

    Article  CAS  PubMed  Google Scholar 

  8. Kharalkar, N. M.; Hayes, L. J.; Valvano, J. W. Pulse-power integrated-decay technique for the measurement of thermal conductivity. Meas. Sci. Technol. 2008, 19, 075104.

    Article  Google Scholar 

  9. Bakker, A.; Zweije, R.; van Tienhoven, G.; Kok, H. P.; Sijbrands, J.; van den Bongard, H. J. G. D.; Rasch, C. R. N.; Crezee, H. Two high-resolution thermal monitoring sheets for clinical superficial hyperthermia. Phys. Med. Biol. 2020, 65, 175021.

    Article  CAS  Google Scholar 

  10. Valvano, J. W.; Allen, J. T.; Walsh, J. T.; Hnatowich, D. J.; Tomera, J. F.; Brunengraber, H.; Bowman, H. F. An isolated rat liver model for the evaluation of thermal techniques to quantify perfusion. J. Biomech. Eng. 1984, 106, 187–191.

    Article  CAS  PubMed  Google Scholar 

  11. del Rosal, B.; Villa, I.; Jaque, D.; Sanz-Rodriguez, F. In vivo autofluorescence in the biological windows: The role of pigmentation. J. Biophoton. 2016, 9, 1059–1067.

    Article  CAS  Google Scholar 

  12. Lu, W. B.; **e, Z. Y.; Tang, Y.; Bai, L.; Yao, Y. Y.; Fu, C.; Ma, G. S. Photoluminescent mesoporous silicon nanoparticles with siCCR2 improve the effects of mesenchymal stromal cell transplantation after acute myocardial infarction. Theranostics 2015, 5, 1068–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cahill, D. G. Erratum: “Thermal conductivity measurement from 30 to 750 K: The 3ω method” [Rev. Sci. Instrum. 61, 802 (1990)]. Rev. Sci. Instrum. 2002, 73, 3701.

    Article  CAS  Google Scholar 

  14. Zhao, D. L.; Qian, X.; Gu, X. K.; Jajja, S. A.; Yang, R. G. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Packag. 2016, 138, 040802.

    Article  Google Scholar 

  15. Mishra, V.; Hardin, C. L.; Garay, J. E.; Dames, C. A 3 omega method to measure an arbitrary anisotropic thermal conductivity tensor. Rev. Sci. Instrum. 2015, 86, 054902.

    Article  PubMed  Google Scholar 

  16. Qiu, L.; Wang, X. T.; Su, G. P.; Tang, D. W.; Zheng, X. H.; Zhu, J.; Wang, Z. G.; Norris, P. M.; Bradford, P. D.; Zhu, Y. T. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film. Sci. Rep. 2016, 6, 21014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kong, Q. Y.; Qiu, L.; Lim, Y. D.; Tan, C. W.; Liang, K.; Lu, C. X.; Tay, B. K. Thermal conductivity characterization of three dimensional carbon nanotube network using freestanding sensor-based technique. Surf. Coat. Technol. 2018, 345, 105–112.

    Article  CAS  Google Scholar 

  18. Kommandur, S.; Yee, S. A suspended 3-omega technique to measure the anisotropic thermal conductivity of semiconducting polymers. Rev. Sci. Instrum. 2018, 89, 114905.

    Article  PubMed  Google Scholar 

  19. Qiu, L.; Ouyang, Y. X.; Feng, Y. H.; Zhang, X. X.; Wang, X. T.; Wu, J. Thermal barrier effect from internal pore channels on thickened aluminum nanofilm. Int. J. Therm. Sci. 2021, 162, 106781.

    Article  CAS  Google Scholar 

  20. Hu, X. J.; Padilla, A. A.; Xu, J.; Fisher, T. S.; Goodson, K. E. 3-Omega measurements of vertically oriented carbon nanotubes on silicon. J. Heat Transfer. 2006, 128, 1109–1113.

    Article  CAS  Google Scholar 

  21. Qiu, L.; Guo, P.; Kong, Q. Y.; Tan, C. W.; Liang, K.; Wei, J.; Tey, J. N.; Feng, Y. H.; Zhang, X. X.; Tay, B. K. Caatigg-booteed interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon 2019, 145, 725–733.

    Article  CAS  Google Scholar 

  22. Shafaat, A.; Francisco Gonzalez-Martinez, J.; Silva, W. O.; Lesch, A.; Nagar, B.; Lopes da Silva, Z.; Neilands, J.; Sotres, J.; Björklund, S.; Girault, H. et al. A rapidly responsive sensor for wireless detection of early and mature microbial biofilms. Angew. Chem., Int. Ed. 2023, 62, e202308181.

    Article  CAS  Google Scholar 

  23. Shen, J. D.; Du, P.; Zhou, B. B.; Zhang, G. B.; Tang, X. X.; Pan, J.; Li, B.; Zhang, J. Y.; Lu, J.; Li, Y. Y. An anti-freezing biomineral hydrogel of high strain sensitivity for artificial skin applications. Nano Res. 2022, 15, 6655–6661.

    Article  CAS  Google Scholar 

  24. **a, S.; Wang, M.; Gao, G. H. Preparation and application of graphene-based wearable sensors. Nano Res. 2022, 15, 9850–9865.

    Article  Google Scholar 

  25. Qiu, L.; Ouyang, Y. X.; Feng, Y. H.; Zhang, X. X.; Wang, X. T. In vivo skin thermophysical property testing technology using flexible thermosensor-based 3ω method. Int. J. Heat Mass Transf. 2020, 163, 120550.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ouyang, Y. X.; Qiu, L.; Bai, Y. Y.; Yu, W.; Feng, Y. H. Synergistical thermal modulation function of 2D Ti3C2 MXene composite nanosheets via interfacial structure modification. iScience 2022, 25, 104825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feldman, A. Algorithm for solutions of the thermal diffusion equation in a stratified medium with a modulated heating source. High Temp.-High Press. 1996, 31, 293–298.

    Article  Google Scholar 

  28. Kim, J. H.; Feldman, A.; Novotny, D. Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness. J. Appl. Phys. 1999, 86, 3959–3963.

    Article  CAS  Google Scholar 

  29. Jacobi, U.; Gautier, J.; Sterry, W.; Lademann, J. Gender-related differences in the physiology of the stratum corneum. Dermatology 2005, 211, 312–317.

    Article  PubMed  Google Scholar 

  30. Cui, Y.; Li, Y. H.; **ng, Y. F. Sweat effects on the thermal analysis of epidermal electronic devices integrated with human skin. Int. J. Heat Mass Transf. 2018, 127, 97–104.

    Article  Google Scholar 

  31. Okabe, T.; Fujimura, T.; Okajima, J.; Aiba, S.; Maruyama, S. Non-invasive measurement of effective thermal conductivity of human skin with a guard-heated thermistor probe. Int. J. Heat Mass Transf. 2018, 126, 625–635.

    Article  Google Scholar 

  32. Fujimura, T.; Okabe, T.; Tanita, K.; Sato, Y.; Lyu, C.; Kambayashi, Y.; Maruyama, S.; Aiba, S. A novel technique to diagnose non-melanoma skin cancer by thermal conductivity measurements: Correlations with cancer stromal factors. Exp. Dermatol. 2019, 28, 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  33. Li, H. J.; Zhang, X. X.; Yi, Y. F. Measurement of blood perfusion using the temperature response to constant surface flux heating. Int. J. Thermophys. 2002, 23, 1631–1644.

    Article  CAS  Google Scholar 

  34. Çetingül, M. P.; Herman, C. A heat transfer model of skin tissue for the detection of lesions: Sensitivity analysis. Phys. Med. Biol. 2010, 55, 5933–5951.

    Article  PubMed  Google Scholar 

  35. Boschmann, M.; Rosenbaum, M.; Leibel, R. L.; Segal, K. R. Metabolic and hemodynamic responses to exercise in subcutaneous adipose tissue and skeletal muscle. Int. J. Sports Med. 2002, 23, 537–543.

    Article  CAS  PubMed  Google Scholar 

  36. Schank, B. J.; Acree, L. S.; Longfors, J.; Gardner, A. W. Differences in vascular reactivity between men and women. Angiology 2006, 57, 702–708.

    Article  PubMed  Google Scholar 

  37. Parker, B. A.; Smithmyer, S. L.; Pelberg, J. A.; Mishkin, A. D.; Herr, M. D.; Proctor, D. N. Sex differences in leg vasodilation during graded knee extensor exercise in young adults. J. Appl. Physiol. 2007, 103, 1583–1591.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work received financial support from the National Natural Science Foundation of China (Nos. 52222602 and 52201261), Bei**g Nova Program (No. 20220484170), Ningbo 3315 Innovative Teams Program (No. 2019A-14-C), and Fundamental Research Funds for the Central Universities (Nos. FRF-TP-22-001C1 and FRF-EYIT-23-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Liu, Yanhui Feng or Lin Qiu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Y., Lin, J., Pei, J. et al. A harmonic-wave bio-thermal method for continuous monitoring skin thermal conductivity and capillary perfusion rate. Nano Res. 17, 4420–4427 (2024). https://doi.org/10.1007/s12274-023-6278-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6278-6

Keywords

Navigation