Log in

Molecule-based vertical transistor via intermolecular charge transport through π-π stacking

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The π-π stacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hop** channels in numerous conducting frameworks/aggregates. However, the exact role of π-to-π channels within typical single crystalline organic semiconductors remains unclear as the orientations of these molecules are diverse, and their control usually requires additional side chain groups that misrepresent the intrinsic properties of the original semiconducting molecules. Therefore, the construction of conduction channels with intrinsic π-π stacking in the molecule-based device is crucial for the utilization of their unique transport characteristics and understanding of the transport mechanism. To this end, we present a molecular intercalation strategy that integrates two-dimensional layered materials with functional organic semiconductor molecules for functional molecule-based electronics. Various organic semiconductor molecules can be effectively intercalated into the van der Waals gaps of semi-metallic TaS2 with π-π stacking configuration and controlled intercalant content. Our results show that the vertical charge transport in the stacking direction shows a tunneling-dominated mechanism that strongly depends on the molecular structures. Furthermore, we demonstrated a new type of molecule-based vertical transistor in which TaS2 and π-π stacked organic molecules function as the electrical contact and the active channel, respectively. On/off ratios as high as 447 are achieved under electrostatic modulation in ionic liquid, comparable to the current state-of-the-art molecular transistors. Our study provides an ideal platform for probing intrinsic charge transport across π-π stacked conjugated molecules and also a feasible approach for the construction of high-performance molecule-based electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. **n, N.; Guan, J. X.; Zhou, C. G.; Chen, X. J. N.; Gu, C. H.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. F. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 2019, 1, 211–230.

    Article  Google Scholar 

  2. Sun, L. L.; Diaz-Fernandez, Y. A.; Gschneidtner, T. A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Single-molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 2014, 43, 7378–7411.

    Article  CAS  PubMed  Google Scholar 

  3. **ang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, H. L.; Stoddart, J. F. From molecular to supramolecular electronics. Nat. Rev. Mater. 2021, 6, 804–828.

    Article  CAS  Google Scholar 

  5. Tang, J. H.; Li, Y. Q.; Wu, Q. Q.; Wang, Z. X.; Hou, S. J.; Tang, K.; Sun, Y.; Wang, H.; Wang, H.; Lu, C. et al. Single- molecule level control of host-guest interactions in metallocycle-C60 complexes. Nat. Commun. 2019, 10, 4599.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, H. L.; Brasiliense, V.; Mo, J. S.; Zhang, L.; Jiao, Y.; Chen, Z.; Jones, L. O.; He, G.; Guo, Q. H.; Chen, X. Y. et al. Single-molecule charge transport through positively charged electrostatic anchors. J. Am. Chem. Soc. 2021, 143, 2886–2895.

    Article  CAS  PubMed  Google Scholar 

  7. Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904–907.

    Article  CAS  PubMed  Google Scholar 

  8. Zang, Y. P.; Fu, T. R.; Zou, Q.; Ng, F.; Li, H. X.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Cumulene wires display increasing conductance with increasing length. Nano. Lett. 2020, 20, 8415–8419.

    Article  CAS  PubMed  Google Scholar 

  9. Li, P. H.; Hou, S. J.; Alharbi, B.; Wu, Q. Q.; Chen, Y. J.; Zhou, L.; Gao, T. Y.; Li, R. H.; Yang, L.; Chang, X. Y. et al. Quantum interference-controlled conductance enhancement in stacked graphene-like dimers. J. Am. Chem. Soc. 2022, 144, 15689–15697.

    Article  CAS  PubMed  Google Scholar 

  10. Famili, M.; Jia, C. C.; Liu, X. S.; Wang, P. Q.; Grace, I. M.; Guo, J.; Liu, Y.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P. et al. Self-assembled molecular-electronic films controlled by room temperature quantum interference. Chem 2019, 5, 474–484.

    Article  Google Scholar 

  11. Jia, C. C.; Famili, M.; Carlotti, M.; Liu, Y.; Wang, P. Q.; Grace, I. M.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P.; Ding, M. N.et al. Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 2018, 4, eaat8237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gimzewski, J. K.; Joachim, C. Nanoscale science of single molecules using local probes. Science 1999, 283, 1683–1688.

    Article  CAS  PubMed  Google Scholar 

  13. Donhauser, Z. J.; Mantooth, B. A.; Kelly, K. F.; Bumm, L. A.; Monnell, J. D.; Stapleton, J. J.; Price, D. W.; Rawlett, A. M.; Allara, D. L.; Tour, J. M. et al. Conductance switching in single molecules through conformational changes. Science 2001, 292, 2303–2307.

    Article  CAS  PubMed  Google Scholar 

  14. Fan, F. R. F.; Yang, J. P.; Cai, L. T.; Price, D. W.; Dirk, S. M.; Kosynkin, D. V.; Yao, Y. X.; Rawlett, A. M.; Tour, J. M.; Bard, A. J. Charge transport through self-assembled monolayers of compounds of interest in molecular electronics. J. Am. Chem. Soc. 2002, 124, 5550–5560.

    Article  CAS  PubMed  Google Scholar 

  15. Mas-Torrent, M.; Rovira, C. Role of molecular order and solid-state structure in organic field-effect transistors. Chem. Rev. 2011, 111, 4833–4856.

    Article  CAS  PubMed  Google Scholar 

  16. Beaujuge, P. M.; Fréchet, J. M. J. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 2011, 133, 20009–20029.

    Article  CAS  PubMed  Google Scholar 

  17. Frisenda, R.; Janssen, V. A. E. C.; Grozema, F. C.; Van Der Zant, H. S. J.; Renaud, N. Mechanically controlled quantum interference in individual π-stacked dimers. Nat. Chem. 2016, 8, 1099–1104.

    Article  CAS  PubMed  Google Scholar 

  18. Tan, Z. B.; Zhang, D.; Tian, H. R.; Wu, Q. Q.; Hou, S. J.; Pi, J. C.; Sadeghi, H.; Tang, Z.; Yang, Y.; Liu, J. Y. et al. Atomically defined angstrom-scale all-carbon junctions. Nat. Commun. 2019, 10, 1748.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao, S. Q.; Wu, Q. Q.; Pi, J. C.; Liu, J. Y.; Zheng, J. T.; Hou, S. J.; Wei, J. Y.; Li, R. H.; Sadeghi, H.; Yang, Y. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 2020, 6, eaba6714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao, S. Q.; Deng, Z. Y.; Albalawi, S.; Wu, Q. Q.; Chen, L. J.; Zhang, H. W.; Zhao, X. J.; Hou, H.; Hou, S. J.; Dong, G. et al. Charge transport through single-molecule bilayer-graphene junctions with atomic thickness. Chem. Sci. 2022, 13, 5854–5859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang, Y. X.; Zhou, Y.; Zhou, D. H.; Chen, Y. R.; **ao, Z. Y.; Shi, J.; Liu, J. Y.; Hong, W. J. Electric field-induced assembly in single-stacking terphenyl junctions. J. Am. Chem. Soc. 2020, 142, 19101–19109.

    Article  CAS  PubMed  Google Scholar 

  22. Yu, H.; Li, J. L.; Li, S. S.; Liu, Y.; Jackson, N. E.; Moore, J. S.; Schroeder, C. M. Efficient intermolecular charge transport in π-stacked pyridinium dimers using cucurbit[8]uril supramolecular complexes. J. Am. Chem. Soc. 2022, 144, 3162–3173.

    Article  CAS  PubMed  Google Scholar 

  23. Kang, B.; Lim, S.; Lee, W. H.; Jo, S. B.; Cho, K. Work-function-tuned reduced graphene oxide via direct surface functionalization as source/drain electrodes in bottom-contact organic transistors. Adv. Mater. 2013, 25, 5856–5862.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, B.; Chen, Y.; Duerr, F.; Mastrogiovanni, D.; Garfunkel, E.; Andrei, E. Y.; Podzorov, V. Modification of electronic properties of graphene with self-assembled monolayers. Nano Lett. 2010, 10, 2427–2432.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, T.; Cheng, Z. G.; Wang, Y. B.; Li, Z. J.; Wang, C. X.; Li, Y. B.; Fang, Y. Self- assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano Lett. 2010, 10, 4738–4741.

    Article  CAS  PubMed  Google Scholar 

  26. Seo, S.; Hwang, E.; Cho, Y.; Lee, J.; Lee, H. Functional molecular junctions derived from double self-assembled monolayers. Angew. Chem., Int. Ed. 2017, 56, 12122–12126.

    Article  CAS  Google Scholar 

  27. Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

    Article  CAS  PubMed  Google Scholar 

  28. Bao, W. Z.; Wan, J. Y.; Han, X. G.; Cai, X. H.; Zhu, H. L.; Kim, D.; Ma, D. K.; Xu, Y. L.; Munday, J. N.; Drew, H. D. et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 2014, 5, 4224.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, J. S.; Yang, A. K.; Wu, X.; Van De Groep, J.; Tang, P. Z.; Li, S. R.; Liu, B. F.; Shi, F. F.; Wan, J. Y.; Li, Q. T. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 2018, 9, 5289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Y. Y.; Yan, D. F.; El Hankari, S.; Zou, Y. Q.; Wang, S. Y. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. (Weinh.) 2018, 5, 1800064.

    PubMed  Google Scholar 

  31. Su, M. X.; Zhou, W. D.; Jiang, Z. Z.; Chen, M. Y.; Luo, X. F.; He, J.; Yuan, C. L. Elimination of interlayer potential barriers of chromium sulfide by self-intercalation for enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 13055–13062.

    Article  CAS  PubMed  Google Scholar 

  32. Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; **e, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 2018, 9, 2373.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; **ao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.

    Article  CAS  PubMed  Google Scholar 

  34. He, Q. Y.; Lin, Z. Y.; Ding, M. N.; Yin, A. X.; Halim, U.; Wang, C.; Liu, Y.; Cheng, H. C.; Huang, Y.; Duan, X. F. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 2019, 19, 6819–6826.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou, B. X.; Zhou, J. Y.; Wang, L. Y.; Kang, J. H.; Zhang, A.; Zhou, J. X.; Zhang, D. H.; Xu, D.; Hu, B. Y.; Deng, S. B. et al. A chemical-dedo** strategy to tailor electron density in molecular-intercalated bulk monolayer MoS2. Nat. Synth., in press, DOI: https://doi.org/10.1038/s44160-023-00396-2.

  36. Zhu, Y.; Ji, Y. J.; Ju, Z. Y.; Yu, K.; Ferreira, P. J.; Liu, Y. Y.; Yu, G. H. Ultrafast intercalation enabled by strong solvent-host interactions: Understanding solvent effect at the atomic level. Angew. Chem., Int. Ed. 2019, 58, 17205–17209.

    Article  CAS  Google Scholar 

  37. He, W.; Zang, H.; Cai, S. H.; Mu, Z. Y.; Liu, C.; Ding, M. N.; Wang, P.; Wang, X. R. Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules. Nano Res. 2020, 13, 2917–2924.

    Article  CAS  Google Scholar 

  38. Ding, M. N.; He, Q. Y.; Wang, G. M.; Cheng, H. C.; Huang, Y.; Duan, X. F. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nat. Commun. 2015, 6, 7867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ding, M. N.; Shiu, H. Y.; Li, S. L.; Lee, C. K.; Wang, G. M.; Wu, H.; Weiss, N. O.; Young, T. D.; Weiss, P. S.; Wong, G. C. et al. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 2016, 10, 9919–9926.

    Article  CAS  PubMed  Google Scholar 

  40. Mu, Z. Y.; Han, N.; Xu, D.; Tian, B. L.; Wang, F. Y.; Wang, Y. Q.; Sun, Y. M.; Liu, C.; Zhang, P. K.; Wu, X. J. et al. Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations. Nat. Commun. 2022, 13, 6911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng, L.; He, W.; Zhu, K.; Wang, C.X.; Wang, S.; Hong, Y.; Chen, Y. M.; Zhou, G. Y.; Miao, H.; Zhou, J. Q. Investigation of poly (1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole. Electrochim. Acta 2018, 283, 560–567.

    Article  CAS  Google Scholar 

  42. Kusumoto, Y.; Takeshita, Y.; Kurawaki, J.; Satake, I. Preferential solvation studied by the fluorescence spectrum of pyrene in water-alcohol binary mixtures. Chem. Lett. 1997, 26, 349–350.

    Article  Google Scholar 

  43. Gao, F.; Ren, B. Y.; Yan, Y.; Tong, Z. Changes in solvation state of strong polyelectrolytes in DMSO/THF mixtures. Acta Phys. Chim. Sin. 2000, 16, 450–453.

    Article  CAS  Google Scholar 

  44. Azhagurajan, M.; Kajita, T.; Itoh, T.; Kim, Y. G.; Itaya, K. In situ visualization of lithium ion intercalation into MoS2 single crystals using differential optical microscopy with atomic layer resolution. J. Am. Chem. Soc. 2016, 138, 3355–3361.

    Article  CAS  PubMed  Google Scholar 

  45. Fu, W.; Qiao, J. S.; Zhao, X. X.; Chen, Y.; Fu, D. Y.; Yu, W.; Leng, K.; Song, P.; Chen, Z.; Yu, T. et al. Room temperature commensurate charge density wave on epitaxially grown bilayer 2H-tantalum sulfide on hexagonal boron nitride. ACS Nano 2020, 14, 3917–3926.

    Article  CAS  PubMed  Google Scholar 

  46. Shi, J. P.; Wang, X. N.; Zhang, S.; **ao, L. F.; Huan, Y. H.; Gong, Y.; Zhang, Z. P.; Li, Y. C.; Zhou, X. B.; Hong, M. et al. Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat. Commun. 2017, 8, 958.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen, S.; Goh, T. W.; Sabba, D.; Chua, J.; Mathews, N.; Huan, C. H. A.; Sum, T. C. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. APL Mater. 2014, 2, 081512.

    Article  Google Scholar 

  48. **n, N.; Li, X. X.; Jia, C. C.; Gong, Y.; Li, M. L.; Wang, S. P.; Zhang, G. Y.; Yang, J. L.; Guo, X. F. Tuning charge transport in aromatic-ring single-molecule junctions via ionic-liquid gating. Angew. Chem., Int. Ed. 2018, 57, 14026–14031.

    Article  CAS  Google Scholar 

  49. El Abbassi, M.; Sangtarash, S.; Liu, X. S.; Perrin, M. L.; Braun, O.; Lambert, C.; Van Der Zant, H. S. J.; Yitzchaik, S.; Decurtins, S.; Liu, S. X. et al. Robust graphene-based molecular devices. Nat. Nanotechnol. 2019, 14, 957–961.

    Article  CAS  PubMed  Google Scholar 

  50. Uji-I, H.; Nishio, S.; Fukumura, H. Electronic properties of a π-stacked pyrene derivative at a liquid-Solid interface studied with scanning tunneling spectroscopy. Chem. Phys. Lett. 2005, 408, 112–117.

    Article  CAS  Google Scholar 

  51. Kang, K.; Lee, K. H.; Han, Y. M.; Gao, H.; **e, S. E.; Muller, D. A.; Park, J. Layer-by- layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017, 550, 229–233.

    Article  PubMed  Google Scholar 

  52. Yuan, L.; Jiang, L.; Zhang, B.; Nijhuis, C. A. Dependency of the tunneling decay coefficient in molecular tunneling junctions on the topography of the bottom electrodes. Angew. Chem., Int. Ed. 2014, 53, 3377–3381.

    Article  CAS  Google Scholar 

  53. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  54. Senkovskiy, B. V.; Nenashev, A. V.; Alavi, S. K.; Falke, Y.; Hell, M.; Bampoulis, P.; Rybkovskiy, D. V.; Usachov, D. Y.; Fedorov, A. V.; Chernov, A. I. et al. Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions. Nat. Commun. 2021, 12, 2542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sarkar, D.; **e, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 2015, 526, 91–95.

    Article  CAS  PubMed  Google Scholar 

  56. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field- effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.

    Article  CAS  PubMed  Google Scholar 

  57. Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

    Article  CAS  PubMed  Google Scholar 

  58. Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X. H.; Tang, Y. X.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X.; Tan, Z. B. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 2019, 18, 364–369.

    Article  CAS  PubMed  Google Scholar 

  59. Li, Y. Q.; Buerkle, M.; Li, G. F.; Rostamian, A.; Wang, H.; Wang, Z. X.; Bowler, D. R.; Miyazaki, T.; **ang, L. M.; Asai, Y. et al. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 2019, 18, 357–363.

    Article  CAS  PubMed  Google Scholar 

  60. Ojeda-Aristizabal, C.; Bao, W.; Fuhrer, M. S. Thin-film barristor: A gate-tunable vertical graphene-pentacene device. Phys. Rev. B 2013, 88, 035435.

    Article  Google Scholar 

  61. Hlaing, H.; Kim, C. H.; Carta, F.; Nam, C. Y.; Barton, R. A.; Petrone, N.; Hone, J.; Kymissis, I. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures. Nano Lett. 2015, 15, 69–74.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, Y.; Zhou, H. L.; Weiss, N. O.; Huang, Y.; Duan, X. F. High-performance organic vertical thin film transistor using graphene as a tunable contact. ACS Nano 2015, 9, 11102–11108.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.N.D. acknowledges the support by the National Natural Science Foundation of China (Nos. 22172075 and 92156024), the Fundamental Research Funds for the Central Universities in China (Nos. 0210/14380174 and 14380273), Bei**g National Laboratory for Molecular Sciences (No. BNLMS202107), and Thousand Talents Plan of Jiangxi Province (No. jxsq2019102002). J.M. acknowledges the support by the National Natural Science Foundation of China (No. 22033004). Q.Y.H. acknowledges support from Early Career Scheme Project (No. 21302821) and General Research Fund Project (No. 11314322) from the University Grants Committee of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **g Ma, Qiyuan He or Mengning Ding.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Fu, C., Tang, L. et al. Molecule-based vertical transistor via intermolecular charge transport through π-π stacking. Nano Res. 17, 4573–4581 (2024). https://doi.org/10.1007/s12274-023-6252-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6252-3

Keywords

Navigation