Log in

Recycling the spent electronic materials to construct a high-performance Cu1.94S/ZnS heterostructure anode of sodium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterostructure engineering by coupling different nanocrystals has received extensive attention because it can enhance the reaction kinetics of the anode of sodium-ion batteries (SIBs). However, constructing high-quality heterostructure anode materials through green and environmentally friendly methods remains a challenge. Herein, we have proposed a simple one-step method by recycling the electronic waste metal materials to synthesize the Cu1.94S/ZnS heterostructure materials. Combined with the experimental analysis and first principle calculations, we find that the synergistic effect of different components in heterostructure structures can significantly enhance the reversible capacity and rate performance of anode materials. Based on the constructed Cu1.94S/ZnS anode, we obtain a superior reversible capacity of 440 mAh·g−1 at 100 mA·g−1 and 335 mAh·g−1 after 3000 cycles at 2000 mA·g−1. Our work sheds new light on designing high-rate and capacity anodes for SIBs through the greenness synthesis method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, M.; Lu, J.; Ji, X. L.; Li, Y. G.; Shao, Y. Y.; Chen, Z. W.; Zhong, C.; Amine, K. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 2020, 5, 276–294.

    Article  CAS  Google Scholar 

  2. Yang, C.; **n, S.; Mai, L. Q.; You, Y. Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 2021, 11, 2000974.

    Article  CAS  Google Scholar 

  3. Chen, B.; Zhong, X. W.; Zhou, G. M.; Zhao, N. Q.; Cheng, H. M. Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions. Adv. Mater. 2022, 34, 2105812.

    Article  CAS  Google Scholar 

  4. Konz, Z. M.; McCloskey, B. D. Lithium quantified, dead or alive. Nat. Energy 2022, 7, 1005–1006.

    Article  CAS  Google Scholar 

  5. Bauer, C.; Burkhardt, S.; Dasgupta, N. P.; Ellingsen, L. A. W.; Gaines, L. L.; Hao, H.; Hischier, R.; Hu, L. B.; Huang, Y. H.; Janek, J. et al. Charging sustainable batteries. Nat. Sustain. 2022, 5, 176–178.

    Article  Google Scholar 

  6. Goikolea, E.; Palomares, V.; Wang, S. J.; de Larramendi, I. R.; Guo, X.; Wang, G. X.; Rojo, T. Na-ion batteries-approaching old and new challenges. Adv. Energy Mater. 2020, 10, 2002055.

    Article  CAS  Google Scholar 

  7. Hirsh, H. S.; Li, Y. X.; Tan, D. H. S.; Zhang, M. H.; Zhao, E. Y.; Meng, Y. S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274.;.

    Article  Google Scholar 

  8. Wang, C. P.; Yan, J. T.; Li, T. Y.; Lv, Z. Q.; Hou, X.; Tang, Y. F.; Zhang, H. M.; Zheng, Q.; Li, X. F. A coral-like FeP@NC anode with increasing cycle capacity for sodium-ion and lithium-ion batteries induced by particle refinement. Angew. Chem. 2021, 133, 25217–25223.

    Article  Google Scholar 

  9. Xu, Y. B.; Wang, K.; Yao, Z. P.; Kang, J.; Lam, D.; Yang, D.; Ai, W.; Wolverton, C.; Hersam, M. C.; Huang, Y. et al. In situ, atomic-resolution observation of lithiation and sodiation of WS2 nanoflakes: Implications for lithium-ion and sodium-ion batteries. Small 2021, 17, 2100637

    Article  CAS  Google Scholar 

  10. Cheng, Z. W.; Zhao, B.; Guo, Y. J.; Yu, L. Z.; Yuan, B. H.; Hua, W. B.; Yin, Y. X.; Xu, S. L.; **ao, B.; Han, X. G. et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv. Energy Mater. 2022, 12, 2103461.

    Article  CAS  Google Scholar 

  11. Tian, Z. H.; Zhang, Y.; Zhu, J. X.; Li, Q. Y.; Liu, T. X.; Antonietti, M. A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: A thermodynamic view. Adv. Energy Mater. 2021, 11, 2102489.

    Article  CAS  Google Scholar 

  12. Shao, W. L.; Shi, H. D.; Jian, X. G.; Wu, Z. S.; Hu, F. Y. Hard-carbon anodes for sodium-ion batteries: Recent status and challenging perspectives. Adv. Energy Sustain. Res. 2022, 3, 2200009.

    Article  CAS  Google Scholar 

  13. Lim, Y. V.; Li, X. L.; Yang, H. Y. Recent tactics and advances in the application of metal sulfides as high-performance anode materials for rechargeable sodium-ion batteries. Adv. Funct. Mater. 2021, 31, 2006761.

    Article  CAS  Google Scholar 

  14. Ali, Z.; Zhang, T.; Asif, M.; Zhao, L. N.; Yu, Y.; Hou, Y. L. Transition metal chalcogenide anodes for sodium storage. Mater. Today 2020, 35, 131–167.

    Article  CAS  Google Scholar 

  15. Zhang, Y. G.; Zhang, Y. H.; Zhang, H. F.; Bai, L. Q.; Hao, L.; Ma, T. Y.; Huang, H. W. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147.

    Article  CAS  Google Scholar 

  16. Pan, Q. G.; Tong, Z. P.; Su, Y. Q.; Qin, S.; Tang, Y. B. Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv. Funct. Mater. 2021, 31, 2103912.

    Article  CAS  Google Scholar 

  17. Yang, F.; Wang, S. G.; Guan, J. D.; Shao, L. Y.; Shi, X. Y.; Cai, J. J.; Sun, Z. P. Hierarchical MoS2-NiS nanosheet-based nanotubes@N-doped carbon coupled with ether-based electrolytes towards high-performance Na-ion batteries. J. Mater. Chem. A 2021, 9, 27072–27083.

    Article  CAS  Google Scholar 

  18. Zong, J. G.; Wang, F.; Nie, C.; Zhao, M. S.; Yang, S. Cobalt and oxygen double do** induced C@MoS2-CoS2-O@C nanocomposites with an improved electronic structure and increased active sites as a high-performance anode for sodium-based dual-ion batteries. J. Mater. Chem. A 2022, 10, 10651–10661.

    Article  CAS  Google Scholar 

  19. Kandula, S.; Youn, B. S.; Cho, J.; Lim, H. K.; Son, J. G. FeS2@N-C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries. Chem. Eng. J. 2022, 439, 135678.

    Article  CAS  Google Scholar 

  20. ** of 2D heterostructures with good bidirectional reaction kinetics for durably reversible sodium-ion batteries. Energy Storage Mater. 2023, 60, 102830.

    Article  Google Scholar 

  21. Huang, P. F.; Ying, H. J.; Zhang, S. L.; Zhang, Z.; Han, W. Q. In situ fabrication of MXene/CuS hybrids with interfacial covalent bonding via Lewis acidic etching route for efficient sodium storage. J. Mater. Chem. A 2022, 10, 22135–22144.

    Article  CAS  Google Scholar 

  22. Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285.

    Article  CAS  PubMed  Google Scholar 

  23. Miao, Y.; **ao, Y.; Hu, S. L.; Chen, S. M. Chalcogenides metal-based heterostructure anode materials toward Na+-storage application. Nano Res. 2023, 16, 2347–2365.

    Article  CAS  Google Scholar 

  24. Wang, S. Y.; Peng, B.; Lu, J.; Jie, Y. L.; Li, X. P.; Pan, Y. X.; Han, Y. H.; Cao, R. G.; Xu, D. S.; Jiao, S. H. Recent progress in rechargeable sodium metal batteries: A review. Chem.—Eur. J. 2023, 29, e202202380.

    Article  CAS  PubMed  Google Scholar 

  25. Chu, C. X.; Li, R.; Cai, F. P.; Bai, Z. C.; Wang, Y. X.; Xu, X.; Wang, N. N.; Yang, J.; Dou, S. X. Recent advanced skeletons in sodium metal anodes. Energy Environ. Sci. 2021, 14, 4318–4340.

    Article  CAS  Google Scholar 

  26. Fang, Y. J.; Luan, D. Y.; Lou, X. W. Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 2020, 32, 2002976.

    Article  CAS  Google Scholar 

  27. Du, P.; Cao, L.; Zhang, B.; Wang, C. H.; **ao, Z. M.; Zhang, J. F.; Wang, D.; Ou, X. Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries. Renew. Sustain. Energy Rev. 2021, 151, 111640.

    Article  CAS  Google Scholar 

  28. Fu, H.; Wen, Q.; Li, P. Y.; Wang, Z. Y.; He, Z. J.; Yan, C.; Mao, J.; Dai, K. H.; Zhang, X. H.; Zheng, J. C. Recent advances on heterojunction-type anode materials for lithium/sodium-ion batteries. Small Methods 2022, 6, 2201025.

    Article  CAS  Google Scholar 

  29. Li, Y.; Wu, F.; Qian, J.; Zhang, M. H.; Yuan, Y. X.; Bai, Y.; Wu, C. Metal chalcogenides with heterostructures for high-performance rechargeable batteries. Small Sci. 2021, 1, 2100012.

    Article  CAS  Google Scholar 

  30. Yu, B.; Ji, Y. X.; Hu, X.; Liu, Y. J.; Yuan, J.; Lei, S.; Zhong, G. B.; Weng, Z. X.; Zhan, H. B.; Wen, Z. H. Heterostructured Cu2S@ZnS/C composite with fast interfacial reaction kinetics for high-performance 3D-printed sodium-ion batteries. Chem. Eng. J. 2022, 430, 132993.

    Article  CAS  Google Scholar 

  31. Zhao, W. X.; Gao, L. X.; Yue, L. C.; Wang, X. Y.; Liu, Q.; Luo, Y. L.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Constructing a hollow microflower-like ZnS/CuS@C heterojunction as an effective ion-transport booster for an ultrastable and high-rate sodium storage anode. J. Mater. Chem. A 2021, 9, 6402–6412.

    Article  CAS  Google Scholar 

  32. Wang, Q. P.; Wang, G. H.; Wang, J.; Li, J. M.; Wang, K.; Zhou, S.; Su, Y. R. In situ hydrothermal synthesis of ZnS/TiO2 nanofibers S-scheme heterojunction for enhanced photocatalytic H2 evolution. Adv. Sustain. Syst. 2023, 7, 2200027.

    Article  CAS  Google Scholar 

  33. Nadargi, D. Y.; Tamboli, M. S.; Patil, S. S.; Dateer, R. B.; Mulla, I. S.; Choi, H.; Suryavanshi, S. S. Microwave-epoxide-assisted hydrothermal synthesis of the CuO/ZnO heterojunction: A highly versatile route to develop H2S gas sensors. ACS Omega 2020, 5, 8587–8595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goktas, S.; Goktas, A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J. Alloys Compd. 2021, 863, 158734.

    Article  CAS  Google Scholar 

  35. Sengupta, S.; Aggarwal, R.; Raula, M. A review on chemical bath deposition of metal chalcogenide thin films for heterojunction solar cells. J. Mater. Res. 2023, 38, 142–153.

    Article  CAS  Google Scholar 

  36. Yang, J.; Wu, X. H.; Mei, Z. H.; Zhou, S.; Su, Y. R.; Wang, G. H. CVD assisted synthesis of macro/mesoporous TiO2/g-C3N4S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Adv. Sustain. Syst. 2022, 6, 2200056.

    Article  CAS  Google Scholar 

  37. Yang, X. X.; Sun, X.; Gan, L. Y.; Sun, L. N.; Mi, H. W.; Zhang, P. X.; Ren, X. Z.; Li, Y. L. A CoOx/FeOx heterojunction on carbon nanotubes prepared by plasma-enhanced atomic layer deposition for the highly efficient electrocatalysis of oxygen evolution reactions. J. Mater. Chem. A 2020, 8, 15140–15147.

    Article  CAS  Google Scholar 

  38. Han, S. K.; Gu, C.; Zhao, S. T.; Xu, S.; Gong, M.; Li, Z. Y.; Yu, S. H. Precursor triggering synthesis of self-coupled sulfide polymorphs with enhanced photoelectrochemical properties. J. Am. Chem. Soc. 2016, 738, 12913–12919.

    Article  Google Scholar 

  39. Sigman, M. B.; Ghezelbash, A.; Hanrath, T.; Saunders, A. E.; Lee, F.; Korgel, B. A. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. J. Am. Chem. Soc. 2003, 125, 16050–16057.

    Article  CAS  PubMed  Google Scholar 

  40. Li, F.; Kong, T.; Bi, W. T.; Li, D. C.; Li, Z.; Huang, X. T. Synthesis and optical properties of CuS nanoplate-based architectures by a solvothermal method. Appl. Surf. Sci. 2009, 255, 6285–6289.

    Article  CAS  Google Scholar 

  41. Wang, S. Y.; Wang, W.; Lu, Z. H. Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuxS (x = 1, 2) thin films. Mater. Sci. Eng. B 2003, 103, 184–188.

    Article  Google Scholar 

  42. Nilsen, W. G. Raman spectrum of cubic ZnS. Phys. Rev. 1969, 182, 838–850.

    Article  CAS  Google Scholar 

  43. Luo, Y. Y.; Duan, G. T.; Li, G. H. Resonant Raman scattering and surface phonon modes of hollow ZnS microspheres. Appl. Phys. Lett. 2007, 90, 201911.

    Article  Google Scholar 

  44. Li, H. H.; Zhang, H.; Diemant, T.; Jürgen Behm, R.; Geiger, D.; Kaiser, U.; Varzi, A.; Passerini, S. Reversible copper sulfide conversion in nonflammable trimethyl phosphate electrolytes for safe sodium-ion batteries. Small Struct. 2021, 2, 2100035.

    Article  CAS  Google Scholar 

  45. Sun, B.; Zhang, Q.; Zhang, C. Z.; Xu, W. L.; Wang, J. P.; Yuan, G. M.; Lv, W.; Li, X. K.; Yang, N. J. A passionfruit-like carbon-confined Cu2ZnSnS4 anode for ultralong-life sodium storage. Adv. Energy Mater. 2021, 11, 2100082.

    Article  CAS  Google Scholar 

  46. Liu, X. J.; Hao, Y. C.; Shu, J.; Sari, H. M. K.; Lin, L. X.; Kou, H. R.; Li, J. W.; Liu, W.; Yan, B.; Li, D. J. et al. Nitrogen/sulfur dual-do** of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy 2019, 57, 414–423.

    Article  CAS  Google Scholar 

  47. Yu, D. X.; Li, M. L.; Yu, T.; Wang, C. Z.; Zeng, Y.; Hu, X. D.; Chen, G.; Yang, G. C.; Du, F. Nanotube-assembled pine-needle-like CuS as an effective energy booster for sodium-ion storage. J. Mater. Chem. A 2019, 7, 10619–10628.

    Article  CAS  Google Scholar 

  48. Zhao, W. X.; Wang, X. D.; Ma, X. Q.; Yue, L. C.; Liu, Q.; Luo, Y. L.; Liu, Y.; Asiri, A. M.; Sun, X. P. In situ tailoring bimetallic-organic framework-derived yolk-shell NiS2/CuS hollow microspheres: An extraordinary kinetically pseudocapacitive nanoreactor for an effective sodium-ion storage anode. J. Mater. Chem. A 2021, 9, 15807–15819.

    Article  CAS  Google Scholar 

  49. Cai, J. Y.; Reinhart, B.; Eng, P.; Liu, Y. Q.; Sun, C. J.; Zhou, H.; Ren, Y.; Meng, X. B. Nitrogen-doped graphene-wrapped Cu2S as a superior anode in sodium-ion batteries. Carbon 2020, 170, 430–438.

    Article  CAS  Google Scholar 

  50. Yang, Z. G.; Wu, Z. G.; Hua, W. B.; **ao, Y.; Wang, G. K.; Liu, Y. X.; Wu, C. J.; Li, Y. C.; Zhong, B. H.; **ang, W. et al. Hydrangea-like CuS with irreversible amorphization transition for high-performance sodium-ion storage. Adv. Sci. 2020, 7, 1903279.

    Article  CAS  Google Scholar 

  51. Zhai, X. G.; Zuo, Z. C.; **ong, Z. C.; Pan, H. H.; Gao, X. Y.; Li, Y. L. Large-scale CuS nanotube arrays@ graphdiyne for high-performance sodium ion battery. 2D Mater. 2022, 9, 025024.

    Article  Google Scholar 

  52. Yang, Z. G.; Wu, Z. G.; Liu, J.; Liu, Y. X.; Gao, S. Y.; Wang, J. A.; **ao, Y.; Zhong, Y. J.; Zhong, B. H.; Guo, X. D. Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage. J. Mater. Chem. A 2020, 8, 8049–8057.

    Article  CAS  Google Scholar 

  53. Li, H. H.; Zhang, H.; Zarrabeitia, M.; Liang, H. P.; Geiger, D.; Kaiser, U.; Varzi, A.; Passerini, S. Metal-organic framework derived copper chalcogenides-carbon composites as high-rate and stable storage materials for Na ions. Adv. Sustain. Syst. 2022, 6, 2200109.

    Article  CAS  Google Scholar 

  54. Nie, X.; Kong, X. Z.; Selvakumaran, D.; Lou, L. Z.; Shi, J. R.; Zhu, T.; Liang, S. Q.; Cao, G. Z.; Pan, A. Q. Three-dimensional carbon-coated treelike Ni3S2 superstructures on a nickel foam as binder-free bifunctional electrodes. ACS Appl. Mater. Interfaces 2018, 10, 36018–36027.

    Article  CAS  PubMed  Google Scholar 

  55. Li, W. Y.; Zhang, B. J.; Lin, R. J.; Ho-Kimura, S.; He, G. J.; Zhou, X. Y.; Hu, J. Q.; Parkin, I. P. A dendritic nickel cobalt sulfide nanostructure for alkaline battery electrodes. Adv. Funct. Mater. 2018, 28, 1705937.

    Article  Google Scholar 

  56. Hsieh, Y. Y.; Tuan, H. Y. Architectural van der Waals Bi2S3/Bi2Se3 topological heterostructure as a superior potassium-ion storage material. Energy Storage Mater. 2022, 51, 789–805.

    Article  Google Scholar 

  57. Xue, S.; Shang, J.; Pu, X. H.; Cheng, H.; Zhang, L. J.; Wang, C. C.; Lee, C. S.; Tang, Y. B. Dual anionic do** strategy towards synergistic optimization of Co9S8 for fast and durable sodium storage. Energy Storage Mater. 2023, 55, 33–41.

    Article  Google Scholar 

  58. Cu, Q.; Shang, C. Q.; Zhou, G. F.; Wang, X. Freestanding MoSe2 nanoflowers for superior Li/Na storage properties. Tungsten, in press, DOI: https://doi.org/10.1007/s42864-022-00167-0.

  59. Wang, Y. Y.; Kang, W. P.; Pu, X. J.; Liang, Y. C.; Xu, B.; Lu, X. Q.; Sun, D. F.; Cao, Y. L. Template-directed synthesis of Co2P/MoSe2 in a N-doped carbon hollow structure for efficient and stable sodium/potassium ion storage. Nano Energy 2022, 93, 106897.

    Article  CAS  Google Scholar 

  60. Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078.

    Article  CAS  PubMed  Google Scholar 

  61. Moellmann, J.; Grimme, S. DFT-D3 study of some molecular crystals. J. Phys. Chem. C 2014, 118, 7615–7621.

    Article  CAS  Google Scholar 

  62. Wisesa, P.; McGill, K. A.; Mueller, T. Efficient generation of generalized monkhorst-pack grids through the use of informatics. Phys. Rev. B 2016, 93, 155109.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22275148), the Fundamental Research Funds for the Central Universities (No. D5000220443), Natural Science Foundation of Chongqing (No. CSTB2023NSCQMSX0538), and China and Young Talent Fund of Association for Science and Technology in Shaanxi, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianshuai Wang or Qiuyu Zhang.

Electronic Supplementary Material

12274_2023_6249_MOESM1_ESM.pdf

Recycling the spent electronic materials to construct a high-performance Cu1.94S/ZnS heterostructure anode of sodium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Wang, T., Tian, L. et al. Recycling the spent electronic materials to construct a high-performance Cu1.94S/ZnS heterostructure anode of sodium-ion batteries. Nano Res. 17, 4006–4015 (2024). https://doi.org/10.1007/s12274-023-6249-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6249-y

Keywords

Navigation