Log in

Hierarchical Bi/S-modified Cu/brass mesh used as structured highly performance catalyst for CO2 electroreduction to formate

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic CO2 reduction reaction (ECO2RR) converts CO2 to high-value chemical products and promotes the carbon cycle. Sulfur (S)-modified copper (Cu) and bismuth (Bi)-based catalysts have been recognized as promising catalysts for ECO2RR. Both of them are highly active for selective formate generation, however, their poor stability and severe competing hydrogen evolution reaction (HER) remain challenging. Herein, S-doped Cu coated with Bi (Bi/Cu-S) is developed to improve ECO2RR selectivity to formate. Bi/Cu-S/brass mesh (BM) electrode material for ECO2RR was prepared by electrodepositing Bi on the surface of Cu-S/BM nanowires obtained from CuS/BM after the electroreduction. The Faradaic efficiency (FE) of the formate reaches the maximum of 94.3% at −0.9 V vs. reversible hydrogen electrode (RHE) with a partial current density as high as −50.7 mAcm−2 and a yield of 30.7 mmolh−1cm−2 under 0.5 M KHCO3 electrolyte. Meanwhile, the FE of formate is higher than 90% in the voltage range of −0.8 to −1.0 V vs. RHE. It also shows good stability at −0.9 V vs. RHE with the FE of formate remaining above 93% after a 10 h reaction. Density functional theory (DFT) calculations demonstrate that the Bi/Cu-S structure promotes the adsorption of CO2 and effectively inhibits HER by enhancing the adsorption of *H to a great extent, improving the selective conversion of CO2 to formate. This work deepens the understanding of the mechanism of Cu-Bi-based catalysts and S-modified Cu-based catalysts in selective ECO2RR to formate, and also provides a new strategy for catalyst design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi, C. F.; Zhi, J. Q.; Yao, X.; Zhang, H.; Yu, Y.; Zeng, Q. S.; Li, L. J.; Zhang, Y. X. How can China achieve the 2030 carbon peak goal—A crossover analysis based on low-carbon economics and deep learning. Energy 2023, 269, 126776.

    Article  CAS  Google Scholar 

  2. Samset, B. H.; Fuglestvedt, J. S.; Lund, M. T. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun. 2020, 11, 3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, T. T.; Shang, H. S.; Zhang, B.; Yan, D. P.; **ang, X. Ag/ultrathin-layered double hydroxide nanosheets induced by a self-redox strategy for highly selective CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 16536–16544.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, J. Z.; Shi, J. J.; Tao, S.; Wu, L.; Lu, J. Cu2O/Ti3C2MXene heterojunction photocatalysts for improved CO2 photocatalytic reduction performance. Appl. Surf. Sci. 2021, 542, 148685.

    Article  CAS  Google Scholar 

  5. Francke, R.; Schille, B.; Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts. Chem. Rev. 2018, 118, 4631–4701.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, J. F.; Li, Z. Y.; Cai, R.; Zhang, T. Y.; Yang, S. Z.; Ma, L.; Wang, Y.; Wu, Y. C.; Wu, J. J. Switching CO2 electroreduction selectivity between C1 and C2 hydrocarbons on Cu gas-diffusion electrodes. Energy Environ. Mater. 2023, 6, e12307.

    Article  CAS  Google Scholar 

  7. Gao, D.; Yang, J. X.; Qi, Y. W.; Guo, C.; Zhang, H. Review and perspectives on CO2 bubble dynamic characteristics in different liquids during carbon capture, utilization, and storage process. Energy Fuels 2023, 37, 58–73.

    Article  CAS  Google Scholar 

  8. Dou, T.; He, J. Q.; Diao, S. T.; Wang, Y. P.; Zhao, X. H.; Zhang, F. Z.; Lei, X. D. Dynamic reconstructuring of CuS/SnO2-S for promoting CO2 electroreduction to formate. J. Energy Chem. 2023, 82, 497–506.

    Article  CAS  Google Scholar 

  9. Alli, Y. A.; Oladoye, P. O.; Ejeromedoghene, O.; Bankole, O. M.; Alimi, O. A.; Omotola, E. O.; Olanrewaju, C. A.; Philippot, K.; Adeleye, A. S.; Ogunlaja, A. S. Nanomaterials as catalysts for CO2 transformation into value-added products: A review. Sci. Total Environ. 2023, 868, 161547.

    Article  CAS  PubMed  Google Scholar 

  10. Gao, T. F.; Kumar, A.; Shang, Z. C.; Duan, X. X.; Wang, H. C.; Wang, S. Y.; Ji, S. F.; Yan, D. P.; Luo, L.; Liu, W. et al. Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides. Chin. Chem. Lett. 2019, 30, 2274–2278.

    Article  CAS  Google Scholar 

  11. Saeidi, S.; Amin, N. A. S.; Rahimpour, M. R. Hydrogenation of CO2 to value-added products—A review and potential future developments. J. CO2 Util. 2014, 5, 66–81.

    Article  CAS  Google Scholar 

  12. Du, J.; Chen, A. B. Ni nanoparticles confined by yolk-shell structure of CNT-mesoporous carbon for electrocatalytic conversion of CO2: Switching CO to formate. J. Energy Chem. 2022, 70, 224–229.

    Article  CAS  Google Scholar 

  13. Liu, X.; Fang, Z. Y.; Teng, X.; Niu, Y. L.; Gong, S. Q.; Chen, W.; Meyer, T. J.; Chen, Z. F. Paired formate and H2 productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts. J. Energy Chem. 2022, 72, 432–441.

    Article  CAS  Google Scholar 

  14. Yan, W. R.; Zhang, J.; Lu, S. F.; Jiang, S. P.; **ang, Y. Tuning dehydrogenation behavior of formic acid on boosting cell performance of formic acid fuel cell at elevated temperatures. J. Power Sources 2022, 544, 231877.

    Article  CAS  Google Scholar 

  15. Lee, C. H.; Kanan, M. W. Controlling H+ vs. CO2 eeduttion selectivity on Pb electrodes. ACS Catal. 2015, 5, 465–469.

    Article  CAS  Google Scholar 

  16. Ji Jang, H.; Hyun Yang, J.; Young Maeng, J.; Jun Kim, Y.; Kyun Rhee, C.; Sohn, Y. Electrochemical CO2 reduction over Pb electrodes modified with group 10, 11, and 14 elements. Appl. Surf. Sci. 2022, 604, 154438.

    Article  CAS  Google Scholar 

  17. Tsujiguchi, T.; Kawabe, Y.; Jeong, S.; Ohto, T.; Kukunuri, S.; Kuramochi, H.; Takahashi, Y.; Nishiuchi, T.; Masuda, H.; Wakisaka, M. et al. Acceleration of electrochemical CO2 reduction to formate at the Sn/reduced graphene oxide interface. ACS Catal. 2021, 11, 3310–3318.

    Article  CAS  Google Scholar 

  18. Wu, Y. Z.; Zhai, P. L.; Cao, S. Y.; Li, Z. W.; Zhang, B.; Zhang, Y. T.; Nie, X. W.; Sun, L. C.; Hou, J. G. Beyond d orbits: Steering the selectivity of electrochemical CO2 reduction via hybridized sp band of sulfur-incorporated porous Cd architectures with dual collaborative sites. Adv. Energy Mater. 2020, 10, 2002499.

    Article  CAS  Google Scholar 

  19. Li, Z. Q.; Sun, B.; **ao, D. F.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Wang, P.; Dai, Y.; Cheng, H. F.; Huang, B. B. Electron-rich Bi nanosheets promote CO2. formation for high-performance and pH-universal electrocatalytic CO2 eeduction. Angew. Chem., Int. Ed. 2023, 62, e202217569.

    Article  CAS  Google Scholar 

  20. Wu, M. G.; Xu, B. L.; Zhang, Y. F.; Qi, S. H.; Ni, W.; Hu, J.; Ma, J. M. Perspectives in emerging bismuth electrochemistry. Chem. Eng. J. 2020, 381, 122558.

    Article  CAS  Google Scholar 

  21. Peng, L. W.; Wang, Y. F.; Wang, Y. X.; Xu, N. N.; Lou, W. S.; Liu, P. X.; Cai, D. Q.; Huang, H. T.; Qiao, J. L. Separated growth of BiCu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 elecroolyee. Appl. Catal. B: Environ. 2021, 288, 120003.

    Article  CAS  Google Scholar 

  22. Zu, M. Y.; Zhang, L.; Wang, C. W.; Zheng, L. R.; Yang, H. G. Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction. J. Mater. Chem. A 2018, 6, 16804–16809.

    Article  CAS  Google Scholar 

  23. Deng, Y. L.; Huang, Y.; Ren, D.; Handoko, A. D.; Seh, Z. W.; Hirunsit, P.; Yeo, B. S. On the role of sulfur for the selective electrochemical reduction of CO2 to formate on CuSx catalysts. ACS Appl. Mater. Interfaces 2018, 10, 28572–28581.

    Article  CAS  PubMed  Google Scholar 

  24. Dou, T.; Qin, Y.; Zhang, F. Z.; Lei, X. D. CuS nanosheet arrays for electrochemical CO2 reduction with surface reconstruction and the effect on selective formation of formate. ACS Appl. Energy Mater. 2021, 4, 4376–4384.

    Article  CAS  Google Scholar 

  25. Qin, Y.; Kong, X. G.; Lei, D. Q.; Lei, X. D. Facial grinding method for synthesis of high-purity CuS nanosheets. Ind. Eng. Chem. Res. 2018, 57, 2759–2764.

    Article  CAS  Google Scholar 

  26. Morales-Garcia, A.; Soares, A. L. Jr; Dos Santos, E. C.; de Abreu, H. A.; Duarte, H. A. First- principles calculations and electron density topological analysis of covellite (CuS). J. Phys. Chem. A 2014, 118, 5823–5831.

    Article  CAS  PubMed  Google Scholar 

  27. Conejeros, S.; Moreira, I. D. P. R.; Alemany, P.; Canadell, E. Nature of holes, oxidation states, and hypervalency in covellite (CuS). Inorg. Chem. 2014, 53, 12402–12406.

    Article  CAS  PubMed  Google Scholar 

  28. Singh, H.; Kumar, S.; Sharma, P. K. Tunable exciton-plasmon coupled resonances with Cu2+/Cu+ substitution in self-assembled CuS nanostructured films. Appl. Surf. Sci. 2023, 612, 155831.

    Article  CAS  Google Scholar 

  29. Guo, P. P.; He, Z. H.; Yang, S. Y.; Wang, W. T.; Wang, K.; Li, C. C.; Wei, Y. Y.; Liu, Z. T.; Han, B. X. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. Green Chem. 2022, 24, 1527–1533.

    Article  CAS  Google Scholar 

  30. DeSario, P. A.; Pietron, J. J.; Brintlinger, T. H.; McEntee, M.; Parker, J. F.; Baturina, O.; Stroud, R. M.; Rolison, D. R. Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitectures. Nanoscale 2017, 9, 11720–11729.

    Article  CAS  PubMed  Google Scholar 

  31. Ding, S. Q.; Liu, S.; Li, J. J.; Wu, L.; Ma, Z. F.; Yuan, X. X. Multifunctional catalyst CuS for nonaqueous rechargeable lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2021, 13, 50065–50075.

    Article  CAS  PubMed  Google Scholar 

  32. Yang, C.; Hu, Y. R.; Li, S. X.; Huang, Q.; Peng, J. Self-supporting Bi-Sb bimetallic nanoleaf for electrochemical synthesis of formate by highly selective CO2 reduction. ACS Appl. Mater. Interfaces 2023, 15, 6942–6950.

    Article  CAS  PubMed  Google Scholar 

  33. Dou, T.; Du, J. W.; He, J. Q.; Wang, Y. P.; Zhao, X. H.; Zhang, F. Z.; Lei, X. D. Sulfurization-derived Cu0-Cu+ sites for electrochemical CO2 reduction to ethanol. J. Power Sources 2022, 533, 231393.

    Article  CAS  Google Scholar 

  34. Hu, Q. F.; Liu, Y.; Zheng, X. R.; Zhang, J. F.; Wang, J. J.; Han, X. P.; Deng, Y. D.; Hu, W. B. How the surface Cu layer affected the activity of Ni foil for alkaline hydrogen evolution. J. Mater. Sci. Technol. 2024, 169, 11–18.

    Article  Google Scholar 

  35. Fan, B.; Zhou, B. N.; Chen, S.; Zhu, F. X.; Chen, B.; Gong, Z. M.; Wang, X. L.; Zhu, C. Y.; Zhou, D. M.; He, F. et al. Preparation of Fe/Cu bimetals by ball milling iron powder and copper sulfate for trichloroethylene degradation: Combined effect of FeSx and Fe/Cu alloy. J. Hazard. Mater. 2023, 460, 132402.

    Article  CAS  PubMed  Google Scholar 

  36. Azenha, C.; Mateos-Pedrero, C.; Alvarez-Guerra, M.; Irabien, A.; Mendes, A. Binary copper-bismuth catalysts for the electrochemical reduction of CO2: Study on surface properties and catalytic activity. Chem. Eng. J. 2022, 445, 136575.

    Article  CAS  Google Scholar 

  37. Chang, S.; Xuan, Y. M.; Duan, J. J.; Zhang, K. High-performance electroreduction CO2 to formate at Bi/nafion interface. Appl. Catal. B: Environ. 2022, 306, 121135.

    Article  CAS  Google Scholar 

  38. Koh, J. H.; Won, D. H.; Eom, T.; Kim, N. K.; Jung, K. D.; Kim, H.; Hwang, Y. J.; Min, B. K. Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst. ACS Catal. 2017, 7, 5071–5077.

    Article  CAS  Google Scholar 

  39. **ng, Y. L.; Kong, X. D.; Guo, X.; Liu, Y.; Li, Q. Y.; Zhang, Y. Z.; Sheng, Y. L.; Yang, X. P.; Geng, Z. G.; Zeng, J. Bi@Sn core-shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. 2020, 7, 1902989.

    Article  CAS  Google Scholar 

  40. Zhao, M. M.; Gu, Y. L.; Gao, W. C.; Cui, P. X.; Tang, H.; Wei, X. Y.; Zhu, H.; Li, G. Q.; Yan, S. C.; Zhang, X. Y. et al. Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Appl. Catal. B: Environ. 2020, 266, 118625.

    Article  CAS  Google Scholar 

  41. Sui, P. F.; Xu, C. Y.; Zhu, M. N.; Liu, S. B.; Liu, Q. X.; Luo, J. L. Interface-induced electrocatalytic enhancement of CO2-to-formate conversion on heterostructured bismuth-based catalysts. Small 2022, 18, 2105682.

    Article  CAS  Google Scholar 

  42. Liu, S. B.; Lu, X. F.; **ao, J.; Wang, X.; Lou, X. W. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem., Int. Ed. 2019, 58, 13828–13833.

    Article  CAS  Google Scholar 

  43. Allioux, F. M.; Merhebi, S.; Ghasemian, M. B.; Tang, J. B.; Merenda, A.; Abbasi, R.; Mayyas, M.; Daeneke, T.; O’Mullane, A. P.; Daiyan, R. et al. Bi- Sn catalytic foam governed by nanometallurgy of liquid metals. Nano Lett. 2020, 20, 4403–4409.

    Article  CAS  PubMed  Google Scholar 

  44. Liu, B. W.; **e, Y.; Wang, X. L.; Gao, C.; Chen, Z. M.; Wu, J.; Meng, H. Y.; Song, Z. C.; Du, S. C.; Ren, Z. Y. Copper-triggered delocalization of bismuth p-orbital favours high-throughput CO2 electroreduction. Appl. Catal. B: Environ. 2022, 301, 120781.

    Article  CAS  Google Scholar 

  45. Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

    Article  CAS  Google Scholar 

  46. Hu, Y. J.; Lu, D. Z.; Zhou, W. L.; Wang, X. Y.; Li, Y. Y. In situ construction of 3D low-coordinated bismuth nanosheets@Cu nanowire core-shell nanoarchitectures for superior CO2 electroreduction activity. J. Mater. Chem. A 2023, 11, 1937–1943.

    Article  CAS  Google Scholar 

  47. Zhang, F. H.; Chen, C. Z.; Yan, S. L.; Zhong, J. H.; Zhang, B.; Cheng, Z. M. Cu@Bi nanocone induced efficient reduction of CO2 to formate with high current density. Appl. Catal. A: Gen. 2020, 598, 117545.

    Article  CAS  Google Scholar 

  48. Wu, Z. D.; Yu, J.; Wu, K.; Song, J. J.; Gao, H. W.; Shen, H. L.; **a, X. F.; Lei, W.; Hao, Q. L. Ultrafine CuS anchored on nitrogen and sulfur Co-doped graphene for selective CO2 electroreduction to formate. Appl. Surf. Sci. 2022, 575, 151796.

    Article  CAS  Google Scholar 

  49. Kahsay, A. W.; Ibrahim, K. B.; Tsai, M. C.; Birhanu, M. K.; Chala, S. A.; Su, W. N.; Hwang, B. J. Selective and low overpotential electrochemical CO2 reduction to formate on CuS decorated CuO heterostructure. Catal. Lett. 2019, 149, 860–869.

    Article  CAS  Google Scholar 

  50. Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y. M.; Quintero-Bermudez, R. et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22278020 and 2177060378), the Program for Changjiang Scholars, Innovative Research Teams in Universities (No. IRT1205), and the Fundamental Research Funds for the Central Universities (Nos. 12060093063 and XK1803-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi** Wang or **aodong Lei.

Electronic Supplementary Material

12274_2023_6247_MOESM1_ESM.pdf

Hierarchical Bi/S-modified Cu/brass mesh used as structured highly performance catalyst for CO2 electroreduction to formate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, T., Song, D., Wang, Y. et al. Hierarchical Bi/S-modified Cu/brass mesh used as structured highly performance catalyst for CO2 electroreduction to formate. Nano Res. 17, 3644–3652 (2024). https://doi.org/10.1007/s12274-023-6247-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6247-0

Keywords

Navigation