Log in

Energy-absorbing porous materials: Bioinspired architecture and fabrication

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Energy-absorbing materials are widely used in transportations, sports, and the military applications. Particularly, porous materials, including natural and artificial materials, have attracted tremendous attentions due to their light weight and excellent energy absorption capability. This review summarizes the recent progresses in the natural and artificial energy-absorbing porous materials. First, we review the typical natural porous materials including cuttlebone, bighorn sheep horn, pomelo peel, and sunflower stem pith. The architectures, energy absorption abilities, and mechanisms of these typical natural materials and their bioinspired materials are summarized. Then, we provide a review on the fabrication methods of artificial energy-absorbing porous materials, such as conventional foaming and three-dimensional (3D) printing. Finally, we address the challenges and prospects for the future development of energy-absorbing porous materials. More importantly, our review provides a direct guidance for the design and fabrication of energy-absorbing porous materials required for various engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, C. J.; Venkatesan, M.; Cho, C. J.; Chung, P. Y.; Chandrasekar, J.; Lee, C. H.; Wang, H. T.; Wong, C. M.; Kuo, C. C. Thermoplastic starch with poly(butylene adipate-co-terephthalate) blends foamed by supercritical carbon dioxide. Polymers 2022, 14, 1952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kang, Y. G.; Song, J. M. Structure and compression behavior of macro-composite starch foams. J. Cell. Plast. 2009, 45, 33–49.

    Article  CAS  Google Scholar 

  3. Sohn, J. S.; Kim, H. K.; Kim, S. W.; Ryu, Y.; Cha, S. W. Biodegradable foam cushions as ecofriendly packaging materials. Sustainability 2019, 11, 1731.

    Article  CAS  Google Scholar 

  4. Li, Z. K.; Jia, Y. B.; Bai, S. B. Polysulfone foam with high expansion ratio prepared by supercritical carbon dioxide assisted molding foaming method. RSC Adv. 2018, 8, 2880–2886.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Önder, A.; Robinson, M. Investigating the feasibility of a new testing method for GFRP/polymer foam sandwich composites used in railway passenger vehicles. Compos. Struct. 2020, 233, 111576.

    Article  Google Scholar 

  6. Sarika, P. R.; Nancarrow, P.; Khansaheb, A.; Ibrahim, T. Progress in bio-based phenolic foams: Synthesis, properties, and applications. ChemBioEng Rev. 2021, 8, 612–632.

    Article  CAS  Google Scholar 

  7. Maurer, M.; Choi, B. H.; Sehanobish, K.; Vogel, G. Modeling the compressive fracture behavior of foams for energy absorption. J. Cell. Plast. 2011, 47, 373–393.

    Article  CAS  Google Scholar 

  8. Conway, K. M.; Romanick, Z.; Cook, L. M.; Morales, L. A.; Despeaux, J. D.; Ridlehuber, M. L.; Fingar, C.; Doctor, D.; Nikhare, C. P.; Pataky, G. J. The anisotropic yield surface of cellular materials. JOM 2022, 74, 1158–1165.

    Article  ADS  Google Scholar 

  9. Parveez, B.; Jamal, N. A.; Anuar, H.; Ahmad, Y.; Aabid, A.; Baig, M. Microstructure and mechanical properties of metal foams fabricated via melt foaming and powder metallurgy technique: A review. Materials 2022, 15, 5302.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Tabatabaei, M.; Le, D.; Atluri, S. Nearly exact and highly efficient elastic-plastic homogenization and/or direct numerical simulation of low-mass metallic systems with architected cellular microstructures. J. Mech. Mater. Struct. 2017, 12, 633–665.

    Article  MathSciNet  Google Scholar 

  11. Simone, A. E.; Gibson, L. J. Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater. 1998, 46, 2139–2150.

    Article  CAS  ADS  Google Scholar 

  12. Chen, H. S.; Yang, T.; Wu, Z. L.; Deng, Z. F.; Zhu, Y. H.; Li, L. Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (II): Large-volume structural analysis. Acta Biomater. 2020, 107, 218–231.

    Article  CAS  PubMed  Google Scholar 

  13. Meng, J. J.; Zhao, Z. Q.; Cao, X.; Wang, N. The integration of triboelectric nanogenerators and supercapacitors: The key role of cellular materials. Materials 2023, 16, 3751.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Li, W. B.; Huang, X. D. Lightweight optimization design of structures with multiple cellular materials. Int. J. Appl. Mech. 2022, 14, 2250059.

    Article  Google Scholar 

  15. Wu, Z. X.; Xu, Y. D.; Savija, B. Mechanical properties of lightweight cementitious cellular composites incorporating micro-encapsulated phase change material. Materials 2021, 14, 7586.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Kozhukhova, N.; Kozhukhova, M.; Teslya, A.; Nikulin, I. The effect of different modifying methods on physical, mechanical and thermal performance of cellular geopolymers as thermal insulation materials for building structures. Buildings 2022, 12, 241.

    Article  Google Scholar 

  17. Torrejon, V. M.; Song, J. M.; Yu, Z.; Hang, S. Gelatin-based cellular solids: Fabrication, structure and properties. J. Cell. Plast. 2022, 58, 797–858.

    Article  CAS  Google Scholar 

  18. Li, D. W.; Bu, X. C.; Xu, Z. P.; Luo, Y. W.; Bai, H. Bioinspired multifunctional cellular plastics with a negative Poisson’s ratio for high energy dissipation. Adv. Mater. 2020, 32, 2001222.

    Article  CAS  Google Scholar 

  19. Yeo, S. J.; Oh, M. J.; Yoo, P. J. Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Adv. Mater. 2019, 31, 1803670.

    Article  Google Scholar 

  20. Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.

    Article  PubMed  ADS  Google Scholar 

  21. Sun, L. D.; Gu, H. C.; Liu, X. J.; Ni, H. B.; Li, Q. W.; Zeng, Y.; Chang, N.; Zhang, D.; Chen, H. Y.; Li, Z. Y. et al. 3D-printed cellular tips for tuning fork atomic force microscopy in shear mode. Nat. Commun. 2020, 11, 5732

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Yi, L. J.; Chang, T.; Feng, X. Q.; Zhang, Y. Y.; Wang, J.; Huang, B. Giant energy absorption capacity of graphene-based carbon honeycombs. Carbon 2017, 118, 348–357.

    Article  CAS  Google Scholar 

  23. Zhang, X. Q.; Meng, Q. Y.; Zhang, K. Q.; Zhu, R. Q.; Qu, Z. L.; Li, Y.; He, R. J. 3D-printed bioinspired Al2O3/polyurea dual-phase architecture with high robustness, energy absorption, and cyclic life. Chem. Eng. J. 2023, 463, 142378.

    Article  CAS  Google Scholar 

  24. Amaral-Labat, G.; Gourdon, E.; Fierro, V.; Pizzi, A.; Celzard, A. Acoustic properties of cellular vitreous carbon foams. Carbon 2013, 58, 76–86.

    Article  CAS  Google Scholar 

  25. Wadley, H. N. G. Cellular metals manufacturing. Adv. Eng. Mater. 2002, 4, 726–733.

    Article  CAS  Google Scholar 

  26. Stephani, G.; Andersen, O.; Göhler, H.; Kostmann, C.; Kümmel, K.; Quadbeck, P.; Reinfried, M.; Studnitzky, T.; Waag, U. Iron based cellular structures—Status and prospects. Adv. Eng. Mater. 2006, 8, 847–852.

    Article  CAS  Google Scholar 

  27. Si, Y.; Yu, J. Y.; Tang, X. M.; Ge, J. L.; Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802.

    Article  PubMed  ADS  Google Scholar 

  28. Letellier, M.; Ghaffari Mosanenzadeh, S.; Naguib, H.; Fierro, V.; Celzard, A. Acoustic properties of model cellular vitreous carbon foams. Carbon 2017, 119, 241–250.

    Article  CAS  Google Scholar 

  29. Sadek, H.; Siddique, S. K.; Wang, C. W.; Lee, C. C.; Chang, S. Y.; Ho, R. M. Bioinspired nanonetwork hydroxyapatite from block copolymer templated synthesis for mechanical metamaterials. ACS Nano 2022, 16, 18298–18306.

    Article  CAS  PubMed  Google Scholar 

  30. Simoes, M.; Harris, J. A.; Ghouse, S.; Hooper, P. A.; McShane, G. J. Process parameter sensitivity of the energy absorbing properties of additively manufactured metallic cellular materials. Mater. Des. 2022, 224, 111398.

    Article  CAS  Google Scholar 

  31. Yang, T.; Jia, Z. A.; Wu, Z. L.; Chen, H. S.; Deng, Z. F.; Chen, L. N.; Zhu, Y. H.; Li, L. High strength and damage-tolerance in echinoderm stereom as a natural bicontinuous ceramic cellular solid. Nat. Commun. 2022, 13, 6083.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Karthikeyan, V.; Surjadi, J. U.; Li, X. C.; Fan, R.; Theja, V. C. S.; Li, W. J.; Lu, Y.; Roy, V. A. L. Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency. Nat. Commun. 2023, 14, 2069.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Guell Izard, A.; Bauer, J.; Crook, C.; Turlo, V.; Valdevit, L. Ultrahigh energy absorption multifunctional spinodal nanoarchitectures. Small 2019, 15, 1903834.

    Article  CAS  Google Scholar 

  34. Mao, A. R.; Chen, J. W.; Bu, X. C.; Tian, L. L.; Gao, W. W.; Saiz, E.; Bai, H. Bamboo- inspired structurally efficient materials with a large continuous gradient. Small 2023, 19, 2301144.

    Article  CAS  Google Scholar 

  35. Mudassir, M.; Tarlochan, F.; Mansour, M. A. Nature-inspired cellular structure design for electric vehicle battery compartment: Application to crashworthiness. Appl. Sci. 2020, 10, 4532.

    Article  CAS  Google Scholar 

  36. Afrousheh, M.; Marzbanrad, J.; Göhlich, D. Topology optimization of energy absorbers under crashworthiness using modified hybrid cellular automata (MHCA) algorithm. Struct. Multidiscipl. Optim. 2019, 60, 1021–1034.

    Article  MathSciNet  Google Scholar 

  37. Selivanov, V. V.; Silnikov, M. V.; Markov, V. A.; Popov, Y. V.; Pusev, V. I. Using highly porous aluminum alloys and honeycomb structures in spacecraft landing gear. Acta Astronaut. 2021, 180, 105–109.

    Article  CAS  ADS  Google Scholar 

  38. Luo, G. Q.; Zhu, Y. X.; Zhang, R. Z.; Cao, P.; Liu, Q. W.; Zhang, J.; Sun, Y.; Yuan, H.; Guo, W.; Shen, Q. et al. A review on mechanical models for cellular media: Investigation on material characterization and numerical simulation. Polymers 2021, 13, 3283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang, D. W.; Wang, Y.; Li, B.; Sun, C. Y.; Guo, Z. H. Environmentally friendly alternative to polyester polyol by corn straw on preparation of rigid polyurethane composite. Compos. Commun. 2020, 17, 109–114.

    Article  Google Scholar 

  40. You, J. G.; Jiang, Z. W.; Jiang, H. Q.; Qiu, J.; Li, M. G.; **ng, H. P.; Xue, J.; Tang, T. A “plasticizing-foaming-reinforcing” approach for creating thermally insulating PVC/polyurea blend foams with shape memory function. Chem. Eng. J. 2022, 450, 138071.

    Article  CAS  Google Scholar 

  41. Chen, G. W.; Luo, H. Y.; Yang, H. Y.; Zhang, T.; Li, S. J. Water effects on the deformation and fracture behaviors of the multiscaled cellular fibrous bamboo. Acta Biomater. 2018, 65, 203–215.

    Article  CAS  PubMed  Google Scholar 

  42. Raney, J. R.; Compton, B. G.; Mueller, J.; Ober, T. J.; Shea, K.; Lewis, J. A. Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc. Natl. Acad. Sci. USA 2018, 115, 1198–1203.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Yu, Z. L.; Yang, N.; Zhou, L. C.; Ma, Z. Y.; Zhu, Y. B.; Lu, Y. Y.; Qin, B.; **ng, W. Y.; Ma, T.; Li, S. C. et al. Bioinspired polymeric woods. Sci. Adv. 2018, 4, eaat7223.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Ferraro, C.; Garcia-Tunon, E.; Rocha, V. G.; Barg, S.; Farinas, M. D.; Alvarez-Arenas, T. E. G.; Sernicola, G.; Giuliani, F.; Saiz, E. Light and strong SiC networks. Adv. Funct. Mater. 2016, 66, 1636–1645.

    Article  Google Scholar 

  45. Yu, Z. L.; Qin, B.; Ma, Z. Y.; Gao, Y. C.; Guan, Q. F.; Yang, H. B.; Yu, S. H. Emerging bioinspired artificial woods. Adv. Mater. 2021, 33, 2001086.

    Article  CAS  Google Scholar 

  46. Xue, J. Z.; Gao, H. L.; Wang, X. Y.; Qian, K. Y.; Yang, Y.; He, T.; He, C. X.; Lu, Y.; Yu, S. H. Bioinspired unidirectional silk fibroin-silver compound nanowire composite scaffold via interface-mediated in situ synthesis. Angew. Chem., Int. Ed. 2019, 58, 14152–14156.

    Article  CAS  Google Scholar 

  47. Weinkamer, R.; Fratzl, P. Mechanical adaptation of biological materials—The examples of bone and wood. Mater. Sci. Eng. C 2011, 31, 1164–1173.

    Article  CAS  Google Scholar 

  48. Li, M.; Dai, X. G.; Wang, M. N.; Bai, H. Bioinspired macroporous materials of MXene nanosheets: Ice-templated assembly and multifunctional applications. Small Methods, in press, https://doi.org/10.1002/smtd.202300213.

  49. Li, M.; Dai, X. G.; Gao, W. W.; Bai, H. Ice-templated fabrication of porous materials with bioinspired architecture and functionality. Acc. Mater. Res. 2022, 3, 1173–1185.

    Article  CAS  Google Scholar 

  50. Li, M.; Wang, M. N.; Zhao, N. F.; Bai, H. Scalable fabrication of high-performance bulk nacre-mimetic materials on a nanogrooved surface. ACS Nano 2022, 16, 14737–14744.

    Article  CAS  PubMed  Google Scholar 

  51. Bu, X. C.; Bai, H. Recent progress of bio-inspired camouflage materials: From visible to infrared range. Chem. Res. Chin. Univ. 2023, 39, 19–29.

    Article  CAS  Google Scholar 

  52. Li, M.; Zhao, N. F.; Wang, M. N.; Dai, X. G.; Bai, H. Conch-shell-inspired tough ceramic. Adv. Funct. Mater. 2022, 32, 2205309.

    Article  CAS  Google Scholar 

  53. Xu, Z. P.; Wu, M. R.; Gao, W. W.; Bai, H. A sustainable single-component “silk nacre”. Sci. Adv. 2022, 5, eabo0946.

    Article  Google Scholar 

  54. Shao, Z. Y.; Tao, T. T.; Xu, H. F.; Chen, C.; Lee, I. S.; Chung, S.; Dong, Z. H.; Li, W. D.; Ma, L.; Bai, H. et al. Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design. View 2021, 2, 20200142.

    Article  Google Scholar 

  55. Lee, E.; Jia, Z. A.; Yang, T.; Li, L. Multiscale mechanical design of the lightweight, stiff, and damage-tolerant cuttlebone: A computational study. Acta Biomater. 2022, 154, 312–323.

    Article  PubMed  Google Scholar 

  56. Kanimba, E.; Yang, T.; Huxtable, S. T.; Li, L.; Tian, Z. T. Thermomechanical analysis of a bio-inspired lightweight multifunctional structure. Adv. Eng. Mater. 2020, 22, 2000371.

    Article  Google Scholar 

  57. Cadman, J.; Zhou, S. W.; Chen, Y. H.; Li, Q. Cuttlebone: Characterisation, application and development of biomimetic materials. J. Bionic Eng. 2012, 9, 367–376.

    Article  Google Scholar 

  58. Mao, A. R.; Zhao, N. F.; Liang, Y. H.; Bai, H. Mechanically efficient cellular materials inspired by cuttlebone. Adv. Mater. 2021, 33, 2007348.

    Article  CAS  Google Scholar 

  59. Yang, C. X.; Li, Q. M. Advanced lattice material with high energy absorption based on topology optimisation. Mech. Mater. 2020, 148, 103536.

    Article  Google Scholar 

  60. Yang, T.; Jia, Z. A.; Chen, H. S.; Deng, Z. F.; Liu, W. K.; Chen, L. N.; Li, L. Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish. Proc. Natl. Acad. Sci. USA 2020, 117, 23450–23459.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Cui, C. Y.; Chen, L.; Feng, S.; Cui, X. G.; Lu, J. Z. Novel cuttlebone-inspired hierarchical bionic structure enabled high energy absorption. Thin Wall. Struct. 2023, 186, 110693.

    Article  Google Scholar 

  62. Zhang, X. Y.; Guo, A. R.; Ma, X. H.; Du, H. Y.; Yan, L. W.; Hou, F.; Liu, J. C. Cuttlefish-bone-structure- like lamellar porous fiber-based ceramics with enhanced mechanical performances. ACS Appl. Mater. Interfaces 2023, 15, 13121–13130.

    Article  CAS  PubMed  Google Scholar 

  63. Wu, F.; Sun, B. H. Study on functional mechanical performance of array structures inspired by cuttlebone. J. Mech. Behav. Biomed. Mater. 2022, 136, 105459.

    Article  PubMed  Google Scholar 

  64. Du, F. Y.; Zhu, W. K.; Yang, R. Z.; Zhang, Y.; Wang, J. W.; Li, W. H.; Zuo, W. Q.; Zhang, L. Z.; Chen, L. Y.; She, W. et al. Bioinspired super thermal insulating, strong and low carbon cement aerogel for building envelope. Adv. Sci. 2023, 10, 2300340.

    Article  CAS  Google Scholar 

  65. Wijerathne, B.; Liao, T.; Ostrikov, K.; Sun, Z. Q. Bioinspired robust mechanical properties for advanced materials. Small Struct. 2022, 3, 2100228.

    Article  CAS  Google Scholar 

  66. He, M.; Li, Y.; Yin, J.; Sun, Q. L.; **ong, W.; Li, S. M.; Yang, L.; Hao, L. Compressive performance and fracture mechanism of bioinspired heterogeneous glass sponge lattice structures manufactured by selective laser melting. Mater. Des. 2022, 214, 110396.

    Article  CAS  Google Scholar 

  67. Fernandes, M. C.; Aizenberg, J.; Weaver, J. C.; Bertoldi, K. Mechanically robust lattices inspired by deep-sea glass sponges. Nat. Mater. 2021, 20, 237–241.

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Woesz, A.; Weaver, J. C.; Kazanci, M.; Dauphin, Y.; Aizenberg, J.; Morse, D. E.; Fratzl, P. Micromechanical properties of biological silica in skeletons of deep-sea sponges. J. Mater. Res. 2006, 21, 2068–2078.

    Article  CAS  ADS  Google Scholar 

  69. Weaver, J. C.; Aizenberg, J.; Fantner, G. E.; Kisailus, D.; Woesz, A.; Allen, P.; Fields, K.; Porter, M. J.; Zok, F. W.; Hansma, P. K. et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J. Struct. Biol. 2007, 158, 93–106.

    Article  CAS  PubMed  Google Scholar 

  70. Sharma, D.; Hiremath, S. S. Bio- inspired repeatable lattice structures for energy absorption: Experimental and finite element study. Compos. Struct. 2022, 283, 115102.

    Article  CAS  Google Scholar 

  71. Li, L. H.; Guo, C.; Chen, Y. T.; Chen, Y. H. Optimization design of lightweight structure inspired by glass sponges (Porifera, Hexacinellida) and its mechanical properties. Bioinspir. Biomim. 2020, 15, 036006.

    Article  PubMed  ADS  Google Scholar 

  72. Baumeister, J.; Banhart, J.; Weber, M. Aluminium foams for transport industry. Mater. Des. 1997, 15, 217–220.

    Article  Google Scholar 

  73. Fan, T.; Xue, S. S.; Zhu, W. B.; Zhang, Y. Y.; Li, Y. Q.; Chen, Z. K.; Huang, P.; Fu, S. Y. Multifunctional polyurethane composite foam with outstanding anti-impact capacity for soft body armors. ACS Appl. Mater. Interfaces 2022, 14, 13778–13789.

    Article  CAS  PubMed  Google Scholar 

  74. Martin, U.; Ehinger, D.; Krüger, L.; Martin, S.; Mottitschka, T.; Weigelt, C.; Aneziris, C. G.; Herrmann, M. Cellular energy absorbing TRIP-Steel/Mg-PSZ composite: Honeycomb structures fabricated by a new extrusion powder technology. Adv. Mater. Sci. Eng. 2010, 2010, 269537.

    Article  Google Scholar 

  75. Vesenjak, M.; Krstulovic-Opara, L.; Ren, Z.; Öchsner, A.; Domazet, Z. Experimental study of open-cell cellular structures with elastic filler material. Exp. Mech. 2009, 49, 501–509.

    Article  CAS  Google Scholar 

  76. Xu, F. X.; Zhang, X.; Zhang, H. A review on functionally graded structures and materials for energy absorption. Eng. Struct. 2018, 171, 309–325.

    Article  Google Scholar 

  77. Tay, Y. Y.; Lim, C. S.; Lankarani, H. M. A finite element analysis of high-energy absorption cellular materials in enhancing passive safety of road vehicles in side-impact accidents. Int. J. Crashworthines. 2014, 19, 288–300.

    Article  Google Scholar 

  78. Tomin, M.; Kmetty, A. Polymer foams as advanced energy absorbing materials for sports applications—A review. J. Appl. Polym. Sci. 2022, 139, 51714.

    Article  CAS  Google Scholar 

  79. Avalle, M.; Belingardi, G. A mechanical model of cellular solids for energy absorption. Adv. Eng. Mater. 2019, 21, 1800457.

    Article  Google Scholar 

  80. Park, J. H.; Jung, H. K.; Lee, J. R. Development and evaluation of fall impact protection pads using additive manufacturing. Materials 2019, 12, 3440.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. Fuller, L. H.; Donahue, S. W. Material properties of bighorn sheep (Ovis canadensis) horncore bone with implications for energy absorption during impacts. J. Mech. Behav. Biomed. Mater. 2021, 114, 104224.

    Article  CAS  PubMed  Google Scholar 

  82. Wheatley, B. B.; Gilmore, E. C.; Fuller, L. H.; Drake, A. M.; Donahue, S. W. How the geometry and mechanics of bighorn sheep horns mitigate the effects of impact and reduce the head injury criterion. Bioinspir. Biomim. 2023, 18, 026005.

    Article  ADS  Google Scholar 

  83. Huang, W.; Zaheri, A.; Jung, J. Y.; Espinosa, H. D.; McKittrick, J. Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn. Acta Biomater. 2017, 64, 1–14.

    Article  PubMed  Google Scholar 

  84. Zhang, Y. C.; Huang, W.; Hayashi, C.; Gatesy, J.; McKittrick, J. Microstructure and mechanical properties of different keratinous horns. J. R. Soc. Interface 2018, 15, 20180093.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tombolato, L.; Novitskaya, E. E.; Chen, P. Y.; Sheppard, F. A.; McKittrick, J. Microstructure, elastic properties and deformation mechanisms of horn keratin. Acta Biomate. 2010, 6, 319–330.

    Article  CAS  Google Scholar 

  86. Kitchener, A. An analysis of the forces of fighting of the blackbuck (Antilope cervicapra) and the bighorn sheep (Ovis canadensis) and the mechanical design of the horn of bovids. J. Zool. 1988, 214, 1–20.

    Article  Google Scholar 

  87. McKittrick, J.; Chen, P. Y.; Tombolato, L.; Novitskaya, E. E.; Trim, M. W.; Hirata, G. A.; Olevsky, E. A.; Horstemeyer, M. F.; Meyers, M. A. Energy absorbent natural materials and bioinspired design strategies: A review. Mater. Sci. Eng. C 2010, 30, 331–342.

    Article  CAS  Google Scholar 

  88. Yang, L. K.; **, Q.; Guo, R. F.; Shen, P. Exploiting bio-inspired high energy-absorbent metal/ceramic composites through emulsion-ice-templating and melt infiltration. Materialia 2020, 14, 100884.

    Article  CAS  Google Scholar 

  89. Huang, W.; Zaheri, A.; Yang, W.; Kisailus, D.; Ritchie, R. O.; Espinosa, H.; McKittrick, J. How water can affect keratin: Hydration-driven recovery of bighorn sheep (Ovis canadensis) horns. Adv. Funct. Mater. 2019, 29, 1901077.

    Article  Google Scholar 

  90. Trim, M. W.; Horstemeyer, M. F.; Rhee, H.; El Kadiri, H.; Williams, L. N.; Liao, J.; Walters, K. B.; McKittrick, J.; Park, S. J. The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn keratin. Acta Biomater. 2011, 7, 1228–1240.

    Article  CAS  PubMed  Google Scholar 

  91. Kitchener, A. Effect of water on the linear viscoelasticity of horn sheath keratin. J. Mater. Sci. Lett. 1987, 6, 321–322.

    Article  CAS  Google Scholar 

  92. Thielen, M.; Speck, T.; Seidel, R. Viscoelasticity and compaction behaviour of the foam-like pomelo (Citrus maxima) peel. J. Mater. Sci. 2013, 48, 3469–3478.

    Article  CAS  ADS  Google Scholar 

  93. Thielen, M.; Speck, T.; Seidel, R. Impact behaviour of freeze-dried and fresh pomelo (Citrus maxima) peel: Influence of the hydration state. R. Soc. Open Sci. 2015, 2, 140322.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  94. Jentzsch, M.; Becker, S.; Thielen, M.; Speck, T. Fnnctinaal anatomy, impact behavior and energy dissipation of the peel of Citrus × limon: A comparison of Citrus × limon nnd Citrus maxima. Plants 2022, 11, 991.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Seidel, R.; Thielen, M.; Schmitt, C.; Bührig-Polaczek, A.; Fleck, C.; Speck, T. Fruit walls and nut shells as an inspiration for the design of bio-inspired impact resistant hierarchically structured materials. Des. Nat. V 2010, 138, 421–430.

    Google Scholar 

  96. Yang, B. S.; Chen, W. H.; **n, R. L.; Zhou, X. H.; Tan, D.; Ding, C.; Wu, Y.; Yin, L.; Chen, C. Y.; Wang, S. et al. Pomelo peel-inspired 3D-printed porous structure for efficient absorption of compressive strain energy. J. Bionic Eng. 2022, 19, 448–457.

    Article  Google Scholar 

  97. Thielen, M.; Schmitt, C. N. Z.; Eckert, S.; Speck, T.; Seidel, R. Structure-function relationship of the foam-like pomelo peel (Citrus maxima)—An inspiration for the development of biomimetic dam** materials with high energy dissipation. Bioinspir Biomim 2013, 8, 025001.

    Article  CAS  PubMed  ADS  Google Scholar 

  98. Wang, B.; Pan, B.; Lubineau, G. Morphological evolution and internal strain map** of pomelo peel using X-ray computed tomography and digital volume correlation. Mater. Des. 2018, 137, 305–315.

    Article  Google Scholar 

  99. Ortiz, J.; Zhang, G. L.; McAdams, D. A. A model for the design of a pomelo peel bioinspired foam. J. Mech. Des. 2018, 140, 114501.

    Article  Google Scholar 

  100. Li, T. T.; Wang, H. Y.; Huang, S. Y.; Lou, C. W.; Lin, J. H. Bioinspired foam composites resembling pomelo peel: Structural design and compressive, bursting and cushioning properties. Compos. Part B Eng. 2019, 172, 290–298.

    Article  CAS  Google Scholar 

  101. Wang, L.; Zhang, C. L.; Zhao, F.; Fu, J. H.; Sun, C. K.; Liu, J. Integrating design of flexible surface and gradient porosity interlayer for improving impact resistance and thermal isolation. Adv. Eng. Mater. 2022, 24, 2100963.

    Article  Google Scholar 

  102. Xu, Y. C.; Huang, Y. Z.; Yan, H.; Gu, Z. D.; Zhao, T. Y.; Zhang, R.; Pan, B.; Dong, L. T.; Liu, M. J.; Jiang, L. Sunflower-pith-inspired anisotropic auxetic mechanics from dual-gradient cellular structures. Matter 2023, 6, 1569–1584.

    Article  CAS  Google Scholar 

  103. Abbas, M. S.; Mcgregor, F.; Fabbri, A.; Ferroukhi, M. Y. The use of pith in the formulation of lightweight bio-based composites: Impact on mechanical and hygrothermal properties. Constr. Build. Mater. 2020, 259, 120573.

    Article  Google Scholar 

  104. Sun, S. N.; Mathias, J. D.; Toussaint, E.; Grédiac, M. Hygromechanical characterization of sunflower stems. Ind. Crops Prod. 2013, 46, 50–59.

    Article  Google Scholar 

  105. Wen, J.; Wang, Q.; **, Q. H.; Pan, Z. L. Study on the structure, composition and performance of natural polymer. Funct. Mater. Lett. 2010, 3, 207–212.

    Article  CAS  Google Scholar 

  106. Wu, J. C.; Zhang, Y.; Yang, F.; Jiang, F.; Xu, X. L.; Tan, Y. Q.; Su, L. A hybrid architectural metamaterial combing plate lattice and hollow-truss lattice with advanced mechanical performances. Addit. Manuf. 2023, 76, 103764

    Google Scholar 

  107. Wegst, U. G. K. Bending efficiency through property gradients in bamboo, palm, and wood-based composites. J. Mech. Behav. Biomed. Mater. 2011, 4, 744–755.

    Article  PubMed  Google Scholar 

  108. Yin, K. Y.; Mylo, M. D.; Speck, T.; Wegst, U. G. K. Bamboo-inspired tubular scaffolds with functional gradients. J. Mech. Behav. Biomed. Mater. 2020, 110, 103826.

    Article  CAS  PubMed  Google Scholar 

  109. Habibi, M. K.; Samaei, A. T.; Gheshlaghi, B.; Lu, J.; Lu, Y. Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: Underlying mechanisms. Acta Biomater. 2015, 16, 178–186.

    Article  PubMed  Google Scholar 

  110. Wang, H. Y.; Li, T. T.; Ren, H. T.; Peng, H. K.; Huang, S. Y.; Lin, Q.; Lin, J. H.; Lou, C. W. Expanded vermiculite-filled polyurethane foam-core bionic composites: Preparation and thermal, compression, and dynamic cushion properties. Polymers 2019, 11, 1028.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhai, W. T.; Jiang, J. J.; Park, C. B. A review on physical foaming of thermoplastic and vulcanized elastomers. Polym. Rev. 2022, 62, 95–141.

    Article  CAS  Google Scholar 

  112. Zakaria, Z.; Ariff, Z. M.; Sipaut, C. S. Effects of parameter changes on the structure and properties of low-density polyethylene foam. J. Vinyl Addit. Technol. 2009, 15, 120–128.

    Article  CAS  Google Scholar 

  113. Liu, H.; Han, C. Y.; Dong, L. S. Study on the cell structure and compressive behavior of biodegradable poly(e-caprolactone) foam. Polym. Eng. Sci. 2008, 48, 2432–2438.

    Article  CAS  Google Scholar 

  114. Lu, T. Y.; Li, J. X.; Han, X. K.; Liu, R. Y.; Cai, C. C.; Wang, H. Effect of blowing agent concentration of ultra-low density NBR/PVC composite foams on compressive behavior and energy-absorption characteristics. J. Vinyl Addit. Technol. 2022, 28, 640–648.

    Article  CAS  Google Scholar 

  115. Zhang, Y. H.; Lu, B.; Lv, F. Z.; Guo, W. M.; Ji, J. H.; Chu, P. K.; Zhang, C. G. Effect of processing conditions on poly(butylene succinate) foam materials. J. Appl. Polym. Sci. 2012, 126, 756–761.

    Article  CAS  Google Scholar 

  116. Li, X.; Liu, Y.; Ye, J. W.; An, X. G.; Cao, Z. N.; Liu, X. B. Innovative surface modification of TiH2 to fabricate aluminum foam with enhanced mechanical properties. Mater. Lett. 2018, 210, 350–353.

    Article  CAS  Google Scholar 

  117. Shi, S. Q.; Sun, W. B.; Zhang, X. R.; Zhu, X. Y.; Liu, J. A. Compressive property and energy absorption capacity of Mg-ceramic-Ni foamsat various temperatures. Metals 2022, 12, 689.

    Article  CAS  Google Scholar 

  118. Yang, D. H.; Yang, S. R.; Wang, H.; Ma, A. B.; Jiang, J. H.; Chen, J. Q.; Wang, D. L. Compressive properties of cellular Mg foams fabricated by melt-foaming method. Mater. Sci. Eng. A 2010, 527, 5405–5409.

    Article  Google Scholar 

  119. Liu, J. A.; Chen, C. W.; Huang, K.; Yan, Y. Y.; Zhang, C. L.; Jia, S. Compressive property of aluminum-epoxy resin-cenosphere interpenetrating phase composites foams. Mater. Res. Express 2019, 6, 1165c8.

    Article  Google Scholar 

  120. **a, X. C.; Zhao, W. M.; Feng, X. Z.; Feng, H.; Zhang, X. Effect of homogenizing heat treatment on the compressive properties of closed-cell Mg alloy foams. Mater. Des. 2013, 49, 19–24.

    Article  CAS  Google Scholar 

  121. Suethao, S.; Shah, D. U.; Smitthipong, W. Recent progress in processing functionally graded polymer foams. Materials 2020, 13, 4060.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  122. Hu, J. S.; Gu, R. X.; Mi, H. Y.; **g, X.; Antwi-Afari, M. F.; Dong, B. B.; Liu, C. T.; Shen, C. Y. Self- reinforced thermoplastic polyurethane wrinkled foams with high energy absorption realized by gas cooling assisted supercritical CO2 foaming. Ind. Eng. Chem. Res. 2022, 61, 4832–4841.

    Article  CAS  Google Scholar 

  123. Zhu, X. S.; Li, X. J.; Mi, H. Y.; **g, X.; Dong, B. B.; He, P.; Liu, C. T.; Shen, C. Y. Graphene oxide/thermoplastic polyurethane wrinkled foams with enhanced compression performance fabricated by dynamic supercritical CO2 foaming. J. Appl. Polym. Sci. 2022, 139, e52485.

    Article  CAS  Google Scholar 

  124. Larsen, A.; Neldin, C. Physical extruder foaming of poly(lactic acid)-processing and foam properties. Polym. Eng. Sci. 2013, 53, 941–949.

    Article  CAS  Google Scholar 

  125. Fan, D. L.; Shi, Z. Y.; Li, N. X.; Qiu, J.; **ng, H. P.; Jiang, Z. W.; Li, M. G.; Tang, T. Novel method for preparing a high-performance auxetic foam directly from polymer resin by a one-pot CO2 foaming process. ACS Appl. Mater. Interfaces 2020, 12, 48040–48048.

    Article  CAS  PubMed  Google Scholar 

  126. Jun, L.; Qin, Z. W.; Mi, H. Y.; Dong, B. B.; Liua, C.; Shena, C. Fabrication of thermoplastic polyurethane foams with wrinkled pores and superior energy absorption properties by CO2 foaming and fast chilling. Macromol. Mater. Eng. 2022, 307, 2100600.

    Article  Google Scholar 

  127. Wang, Y. M.; Li, J.; **e, Y. B.; Hu, J. S.; Zhu, X. S.; Sun, S. J.; **g, X.; Mi, H. Y.; Liu, C. T.; Shen, C. Y. Fabrication of wrinkled thermoplastic polyurethane foams by dynamic supercritical carbon dioxide foaming. J. Supercrit. Fluids 2022, 180, 105429.

    Article  CAS  Google Scholar 

  128. Koohbor, B.; Blourchian, A.; Uddin, K. Z.; Youssef, G. Characterization of energy absorption and strain rate sensitivity of a novel elastomeric polyurea foam. Adv. Eng. Mater. 2021, 23, 2000797.

    Article  CAS  Google Scholar 

  129. Traugutt, N. A.; Mistry, D.; Luo, C. Q.; Yu, K.; Ge, Q.; Yakacki, C. M. Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv. Mater. 2020, 32, 2000797.

    Article  CAS  Google Scholar 

  130. Dwyer, C. M.; Carrillo, J. G.; De la Pena, J. A. D.; Santiago, C. C.; MacDonald, E.; Rhinehart, J.; Williams, R. M.; Burhop, M.; Yelamanchi, B.; Cortes, P. Impact performance of 3D printed spatially varying elastomeric lattices. Polymers 2023, 15, 1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jiang, Y. L.; Shi, K.; Zhou, L. N.; He, M. M.; Zhu, C.; Wang, J. C.; Li, J. H.; Li, Y. B.; Liu, L. M.; Sun, D. et al. 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc. Bioact. Mater. 2023, 20, 528–538

    PubMed  Google Scholar 

  132. Luo, C. Q.; Chung, C.; Traugutt, N. A.; Yakacki, C. M.; Long, K. N.; Yu, K. 3D printing of liquid crystal elastomer foams for enhanced energy dissipation under mechanical insult. ACS Appl. Mater. Interfaces 2021, 13, 12698–12708.

    Article  CAS  PubMed  Google Scholar 

  133. Li, X. W.; Yu, X.; Zhao, M.; Li, Z. D.; Wang, Z. G.; Zhai, W. Multi-level bioinspired microlattice with broadband sound-absorption capabilities and deformation-tolerant compressive response. Adv. Funct. Mater. 2023, 33, 2210160.

    Article  CAS  Google Scholar 

  134. Mistry, D.; Traugutt, N. A.; Sanborn, B.; Volpe, R. H.; Chatham, L. S.; Zhou, R.; Song, B.; Yu, K.; Long, K. N.; Yakacki, C. M. Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers. Nat. Commun. 2021, 12, 6677.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  135. Tian, Y. Y.; Chen, K. J.; Zheng, H.; Kripalani, D. R.; Zeng, Z. H.; Jarlöv, A.; Chen, J. Y.; Bai, L. C.; Ong, A.; Du, H. J. et al. Additively manufactured dual-faced structured fabric for shape-adaptive protection. Adv. Sci. 2023, 10, 2301567.

    Article  CAS  Google Scholar 

  136. Feng, X. B.; Surjadi, J. U.; Fan, R.; Li, X. C.; Zhou, W. Z.; Zhao, S. J.; Lu, Y. Microalloyed medium-entropy alloy (MEA) composite nanolattices with ultrahigh toughness and cyclability. Mater. Today 2021, 42, 10–16.

    Article  CAS  Google Scholar 

  137. Zhang, X.; Yao, J. H.; Liu, B.; Yan, J.; Lu, L.; Li, Y.; Gao, H. J.; Li, X. Y. Three-dimensional high-entropy alloy-polymer composite nanolattices that overcome the strength-recoverability trade-off. Nano Lett. 2018, 18, 4247–4256.

    Article  CAS  PubMed  ADS  Google Scholar 

  138. Cheng, H. W.; Zhu, X. X.; Cheng, X. W.; Cai, P. Z.; Liu, J.; Yao, H. J.; Zhang, L.; Duan, J. L. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultrahigh energy absorption capacity. Nat. Commun. 2023, 14, 1243.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  139. Gao, L. B.; Song, J.; Jiao, Z. B.; Liao, W. B.; Luan, J. H.; Surjadi, J. U.; Li, J. Y.; Zhang, H. T.; Sun, D.; Liu, C. T. et al. High-entropy alloy (HEA)-coated nanolattice structures and their mechanical properties. Adv. Eng. Mater. 2018, 20, 1700625.

    Article  Google Scholar 

  140. Garcia-Taormina, A. R.; Kurpiers, C. M.; Schwaiger, R.; Hodge, A. M. Coatings for core-shell composite micro-lattice structures: Varying sputtering parameters. Adv. Eng. Mater. 2022, 24, 2101264.

    Article  CAS  Google Scholar 

  141. Surjadi, J. U.; Feng, X. B.; Fan, R.; Lin, W. T.; Li, X. C.; Lu, Y. Hollow medium-entropy alloy nanolattices with ultrahigh energy absorption and resilience. NPG Asia Mater. 2021, 13, 36.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22075244), the Zhejiang Provincial Innovation Center of Advanced Chemicals Technology (No. ACTIC-2022-004), the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No. 2021SZ-TD009), the Zhejiang Provincial Natural Science Foundation of China (No. LZ22E030001), and the Science and Technology Program of Institute of Zhejiang University- Quzhou (Nos. IZQ2021KJ2001 and IZQ2022KJ3013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Gao or Hao Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, M., Chen, J. et al. Energy-absorbing porous materials: Bioinspired architecture and fabrication. Nano Res. 17, 679–690 (2024). https://doi.org/10.1007/s12274-023-6223-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6223-8

Keywords

Navigation