Log in

Dynamically crosslinked nanocapsules for the efficient and serum-resistant cytosolic protein delivery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Intracellular protein delivery is critical to the development of protein-based biopharmaceuticals and therapies. However, current delivery vectors often suffer from complicated syntheses, low generality among various proteins, and insufficient serum stability. Herein, we developed an enlightened cytosolic protein delivery strategy by dynamically crosslinking epigallocatechin gallate (EGCG), low-molecular-weight polyethylenimine (PEI 1.8k), and 2-acetylphenylboric acid (2-APBA) on the protein surface, hence forming the EPP-protein nanocapsules (NCs). EGCG enhanced protein encapsulation via hydrogen bonding, and reduced the positive charge density of PEI to endow the NCs with high serum tolerance, thereby enabling effective cellular internalization in serum. The formation of reversible imine and boronate ester among 2-APBA, EGCG, and PEI 1.8k allowed acid-triggered dissociation of EPP-protein NCs in the endolysosomes, which triggered efficient intracellular release of the native proteins. Such strategy therefore showed high efficiency and universality for diversities of proteins with different molecular weights and isoelectric points, including enzyme, toxin, antibody, and CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 ribonucleoprotein (RNP), outperforming the commercial protein transduction reagent PULSin and RNP transfection reagent lipofectamine CMAX. Moreover, intravenously (i.v.) injected EPP-saporin NCs efficiently delivered saporin into 4T1 tumor cells to provoke robust antitumor effect. This simple, versatile, and robust cytosolic protein delivery system holds translational potentials for the development of protein-based therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39.

    Article  CAS  PubMed  Google Scholar 

  2. Pakulska, M. M.; Miersch, S.; Shoichet, M. S. Designer protein delivery: From natural to engineered affinity-controlled release systems. Science 2016, 351, eaac4750.

    Article  Google Scholar 

  3. Hashimoto, Y.; Mukai, S. A.; Sasaki, Y.; Akiyoshi, K. Nanogel tectonics for tissue engineering: Protein delivery systems with nanogel chaperones. Adv. Healthc. Mater. 2018, 7, 1800729.

    Article  Google Scholar 

  4. Carter, P. J.; Rajpal, A. Designing antibodies as therapeutics. Cell 2022, 185, 2789–2805.

    Article  CAS  PubMed  Google Scholar 

  5. He, H.; Chen, Y. B.; Li, Y. J.; Song, Z. Y.; Zhong, Y. N.; Zhu, R. Y.; Cheng, J. J.; Yin, L. C. Effective and selective anti-cancer protein delivery via all-functions-in-one nanocarriers coupled with visible light-responsive, reversible protein engineering. Adv. Funct. Mater. 2018, 28, 1706710.

    Article  Google Scholar 

  6. **g, X. D.; Hu, H.; Sun, Y. Z.; Yu, B.; Cong, H. L.; Shen, Y. Q. The intracellular and extracellular microenvironment of tumor site: The trigger of stimuli-responsive drug delivery systems. Small Methods 2022, 6, 2101437.

    Article  CAS  Google Scholar 

  7. Luo, T. L.; Zheng, Q. Z.; Shao, L. H.; Ma, T. Y.; Mao, L. Q.; Wang, M. Intracellular delivery of glutathione peroxidase degrader induces ferroptosis in vivo. Angew. Chem., Int. Ed. 2022, 61, e202206277.

    Article  ADS  CAS  Google Scholar 

  8. Yang, Y. X.; Zhou, R. Y.; Wang, Y. F.; Zhang, Y. Q.; Yu, J. C.; Gu, Z. Recent advances in oral and transdermal protein delivery systems. Angew. Chem., Int. Ed. 2023, 62, e202214795.

    Article  CAS  Google Scholar 

  9. Tumeh, P. C.; Harview, C. L.; Yearley, J. H.; Shintaku, I. P.; Taylor, E. J. M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance.. Nature 2014, 515, 568–571.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, Q.; Chen, G. J.; Chen, J. W.; Shen, J. J.; Zhang, X. D.; Wang, J. Q.; Chan, A.; Gu, Z. Bioresponsive protein complex of aPD1 and aCD47 antibodies for enhanced immunotherapy. Nano Lett. 2019, 19, 4879–4889.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Tang, J. K.; Liu, J.; Zheng, Q. Z.; Li, W. T.; Sheng, J. H.; Mao, L. Q.; Wang, M. In-situ encapsulation of protein into nanoscale hydrogen-bonded organic frameworks for intracellular biocatalysis. Angew. Chem., Int. Ed. 2021, 60, 22315–22321.

    Article  CAS  Google Scholar 

  12. Liu, X.; Li, W.; Wang, M. R.; Liu, N. Y.; Yang, Q.; He, Y. J.; Hu, D. M.; Zhu, R. Y.; Yin, L. C. Inflammatory cell-inspired cascade nanozyme induces intracellular radical storm for enhanced anticancer therapy. Small Methods 2023, 7, 2201641.

    Article  CAS  Google Scholar 

  13. Tai, W. Y.; Zhao, P. F.; Gao, X. H. Cytosolic delivery of proteins by cholesterol tagging. Sci. Adv. 2020, 6, eabb0310.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei, Y. S.; Li, X. D.; Lin, J. H.; Zhou, Y.; Yang, J. D.; Hou, M. Y.; Wu, F.; Yan, J.; Ge, C. L.; Hu, D. M. et al. Oral delivery of siRNA using fluorinated, small-sized nanocapsules toward anti-inflammation treatment. Adv. Mater. 2023, 35, 2206821.

    Article  CAS  Google Scholar 

  15. Qu, Y. J.; De Rose, R.; Kim, C. J.; Zhou, J. J.; Lin, Z. X.; Ju, Y.; Bhangu, S. K.; Cortez-Jugo, C.; Cavalieri, F.; Caruso, F. Supramolecular polyphenol-DNA microparticles for in vivo adjuvant and antigen co-delivery and immune stimulation. Angew. Chem., Int. Ed. 2023, 62, e202214935.

    Article  CAS  Google Scholar 

  16. Li, Y. M.; Li, A. C.; Xu, Q. B. Intracellular delivery of His-tagged genome-editing proteins enabled by nitrilotriacetic acid-containing lipidoid nanoparticles. Adv. Healthc. Mater. 2019, 8, 1800996.

    Article  Google Scholar 

  17. **g, R. R.; Jiao, P.; Chen, J. Q.; Meng, X. H.; Wu, X. Y.; Duan, Y. T.; Shang, K.; Qian, L. L.; Huang, Y. J.; Liu, J. W. et al. Cas9-cleavage sequences in size-reduced plasmids enhance nonviral genome targeting of CARs in primary human T cells. Small Methods 2021, 5, 2100071.

    Article  CAS  Google Scholar 

  18. Tan, E. C.; Wan, T.; Yu, C. L.; Fan, Q. Q.; Liu, W. B.; Chang, H.; Lv, J.; Wang, H.; Li, D. L.; **, Y. et al. ROS-responsive polypeptides for intracellular protein delivery and CRISPR/Cas9 gene editing.. Nano Today 2022, 46, 101617.

    Article  CAS  Google Scholar 

  19. Tietz, O.; Cortezon-Tamarit, F.; Chalk, R.; Able, S.; Vallis, K. A. Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells. Nat. Chem. 2022, 14, 284–293.

    Article  CAS  PubMed  Google Scholar 

  20. Guo, S. W.; Huang, Q. X.; Wei, J. W.; Wang, S. P.; Wang, Y. T.; Wang, L. Y.; Wang, R. B. Efficient intracellular delivery of native proteins facilitated by preorganized guanidiniums on pillar[5]arene skeleton. Nano Today 2022, 43, 101396.

    Article  CAS  Google Scholar 

  21. Wang, M.; Zuris, J. A.; Meng, F. T.; Rees, H.; Sun, S.; Deng, P.; Han, Y.; Gao, X.; Pouli, D.; Wu, Q. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl. Acad. Sci. USA 2016, 113, 2868–2873.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, Y. J.; Wu, J. Y.; Hu, X. B.; Ding, T. J. T.; Tang, T. T.; **ang, D. X. Biomimetic liposome with surface-bound elastase for enhanced tumor penetration and chemo-immumotherapy. Adv. Healthc. Mater. 2021, 10, 2100794.

    Article  CAS  Google Scholar 

  23. Li, Y. M.; Ye, Z. F.; Yang, H. Y.; Xu, Q. B. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharm. Sin. B 2022, 12, 2624–2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, X.; Zhao, Z. Y.; Wu, F.; Chen, Y. B.; Yin, L. C. Tailoring hyperbranched poly(β-amino ester) as a robust and universal platform for cytosolic protein delivery. Adv. Mater. 2022, 34, 2108116.

    Article  CAS  Google Scholar 

  25. Lu, R. J.; Zheng, Y. J.; Wang, M. R.; Lin, J. H.; Zhao, Z. Y.; Chen, L.; Zhang, J. H.; Liu, X.; Yin, L. C.; Chen, Y. B. Reactive oxygen species-responsive branched poly (β-amino ester) with robust efficiency for cytosolic protein delivery. Acta Biomater. 2022, 152, 355–366.

    Article  CAS  PubMed  Google Scholar 

  26. Egloff, S.; Runser, A.; Klymchenko, A.; Reisch, A. Size-dependent electroporation of dye-loaded polymer nanoparticles for efficient and safe intracellular delivery. Small Methods 2021, 5, 2000947.

    Article  CAS  Google Scholar 

  27. Zhang, Z.; Gao, X.; Li, Y. W.; Lv, J.; Wang, H.; Cheng, Y. Y. Catechol-based polymers with high efficacy in cytosolic protein delivery. CCS Chem. 2023, 5, 1411–1421.

    Article  CAS  Google Scholar 

  28. Purwada, A.; Tian, Y. F.; Huang, W. S.; Rohrbach, K. M.; Deol, S.; August, A.; Singh, A. Self-assembly protein nanogels for safer cancer immunotherapy. Adv. Healthc. Mater. 2016, 5, 1413–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liang, K.; Ng, S.; Lee, F.; Lim, J.; Chung, J. E.; Lee, S. S.; Kurisawa, M. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels. Acta Biomater. 2016, 33, 142–152.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, X. W.; Centurion, F.; Misra, A.; Patel, S.; Gu, Z. Molecularly targeted nanomedicine enabled by inorganic nanoparticles for atherosclerosis diagnosis and treatment. Adv. Drug Deliv. Rev. 2023, 194, 114709.

    Article  CAS  PubMed  Google Scholar 

  31. Dembélé, J.; Liao, J. H.; Liu, T. P.; Chen, Y. P. Overcoming cytosolic delivery barriers of proteins using denatured protein-conjugated mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2023, 15, 432–451.

    Article  PubMed  Google Scholar 

  32. Xu, X. M.; Xu, Y. N.; Li, Y. A.; Li, M.; Wang, L. L.; Zhang, Q.; Zhou, B. J.; Lin, Q.; Gong, T.; Sun, X. et al. Glucose-responsive erythrocyte-bound nanoparticles for continuously modulated insulin release. Nano Res. 2022, 15, 5205–5215.

    Article  ADS  CAS  Google Scholar 

  33. Yang, X. T.; Tang, Q.; Jiang, Y.; Zhang, M. N.; Wang, M.; Mao, L. Q. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J. Am. Chem. Soc. 2019, 141, 3782–3786.

    Article  CAS  PubMed  Google Scholar 

  34. Cases Díaz, J.; Lozano-Torres, B.; Giménez-Marqués, M. Boosting protein encapsulation through Lewis-acid-mediated metal-organic framework mineralization: Toward effective intracellular delivery. Chem. Mater. 2022, 34, 7817–7827.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zheng, Q. Z.; Li, W. T.; Mao, L. Q.; Wang, M. Nanoscale metal-organic frameworks for the intracellular delivery of CRISPR/Cas9 genome editing machinery. Biomater. Sci. 2021, 9, 7024–7033.

    Article  CAS  PubMed  Google Scholar 

  36. Xu, J.; Lv, J.; Zhuang, Q.; Yang, Z. J.; Cao, Z. Q.; Xu, L. G.; Pei, P.; Wang, C. Y.; Wu, H. F.; Dong, Z. L. et al. A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. Nat. Nanotechnol. 2020, 15, 1043–1052.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Liu, C. Y.; Wan, T.; Wang, H.; Zhang, S.; **, Y.; Cheng, Y. Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaaw8922.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Q.; Yang, Y. F.; Liu, D. K.; Ji, Y.; Gao, X. D.; Yin, J.; Yao, W. B. Cytosolic protein delivery for intracellular antigen targeting using supercharged polypeptide delivery platform. Nano Lett. 2021, 21, 6022–6030.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Xu, J. K.; Li, Z.; Fan, Q. Q.; Lv, J.; Li, Y. W.; Cheng, Y. Y. Dynamic polymer amphiphiles for efficient intracellular and in vivo protein delivery. Adv. Mater. 2021, 33, 2104355.

    Article  CAS  Google Scholar 

  40. Lv, J.; Tan, E. C.; Wang, Y. Q.; Fan, Q. Q.; Yu, J. W.; Cheng, Y. Y. Tailoring guanidyl-rich polymers for efficient cytosolic protein delivery. J. Control. Release 2020, 320, 412–420.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Z. J.; Shen, W. W.; Ling, J.; Yan, Y.; Hu, J. J.; Cheng, Y. Y. The fluorination effect of fluoroamphiphiles in cytosolic protein delivery. Nat. Commun. 2018, 9, 1377.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Luo, M.; Wang, H.; Wang, Z. H.; Cai, H. C.; Lu, Z. G.; Li, Y.; Du, M. J.; Huang, G.; Wang, C. S.; Chen, X. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 648–654.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. He, X.; Long, Q. P.; Zeng, Z. Y.; Yang, L.; Tang, Y. Q.; Feng, X. L. Simple and efficient targeted intracellular protein delivery with self-assembled nanovehicles for effective cancer therapy. Adv. Funct. Mater. 2019, 29, 1906187.

    Article  CAS  Google Scholar 

  44. Rui, Y.; Wilson, D. R.; Choi, J.; Varanasi, M.; Sanders, K.; Karlsson, J.; Lim, M.; Green, J. J. Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaay3255.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Battig, M. R.; Soontornworajit, B.; Wang, Y. Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J. Am. Chem. Soc. 2012, 134, 12410–12413.

    Article  CAS  PubMed  Google Scholar 

  46. Sgolastra, F.; Backlund, C. M.; Ozay, E. I.; Deronde, B. M.; Minter, L. M.; Tew, G. N. Sequence segregation improves non-covalent protein delivery. J. Control. Release 2017, 254, 131–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jia, X. Q.; Wang, L. Y.; Du, J. J. In situ polymerization on biomacromolecules for nanomedicines.. Nano Res 2018, 11, 5028–5048.

    Article  CAS  Google Scholar 

  48. Zhao, M. X.; Biswas, A.; Hu, B. L.; Joo, K. I.; Wang, P.; Gu, Z.; Tang, Y. Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials 2011, 32, 5223–5230.

    Article  CAS  PubMed  Google Scholar 

  49. Gu, Z.; Yan, M.; Hu, B. L.; Joo, K. I.; Biswas, A.; Huang, Y.; Lu, Y. F.; Wang, P.; Tang, Y. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 2009, 9, 4533–4538.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Liu, M.; Shen, S. Y.; Wen, D.; Li, M. R.; Li, T.; Chen, X. J.; Gu, Z.; Mo, R. Hierarchical nanoassemblies-assisted combinational delivery of cytotoxic protein and antibiotic for cancer treatment. Nano Lett. 2018, 18, 2294–2303.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Gu, Z.; Dang, T. T.; Ma, M. L.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y. Z.; Zhang, Y. L.; Anderson, D. G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 2013, 7, 6758–6766.

    Article  CAS  PubMed  Google Scholar 

  52. Honda, Y.; Nomoto, T.; Matsui, M.; Takemoto, H.; Kaihara, Y.; Miura, Y.; Nishiyama, N. Sequential self-assembly using tannic acid and phenylboronic acid-modified copolymers for potential protein delivery. Biomacromolecules 2020, 21, 3826–3835.

    Article  CAS  PubMed  Google Scholar 

  53. Liu, C. Y.; Shen, W. W.; Li, B. N.; Li, T. F.; Chang, H.; Cheng, Y. Y. Natural polyphenols augment cytosolic protein delivery by a functional polymer. Chem. Mater. 2019, 31, 1956–1965.

    Article  CAS  Google Scholar 

  54. Lv, S. X.; Wu, Y. C.; Cai, K. M.; He, H.; Li, Y. J.; Lan, M.; Chen, X. S.; Cheng, J. J.; Yin, L. C. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor-receptor coordination interactions. J. Am. Chem. Soc. 2018, 140, 1235–1238.

    Article  CAS  PubMed  Google Scholar 

  55. Hashimoto, T.; Gálvez, A. O.; Maruoka, K. In situ assembled boronate ester assisted chiral carboxylic acid catalyzed asymmetric trans-aziridinations. J. Am. Chem. Soc. 2013, 135, 17667–17670.

    Article  CAS  PubMed  Google Scholar 

  56. Lim, J.; Lee, J.; Jung, S.; Kim, W. J. Phenylboronic-acid-based nanocomplex as a feasible delivery platform of immune checkpoint inhibitor for potent cancer immunotherapy. J. Control. Release 2021, 330, 1168–1177.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, P.; Zhang, Y.; Ding, X. Y.; Shen, W.; Li, M. Q.; Wagner, E.; **ao, C. S.; Chen, X. S. A multistage cooperative nanoplatform enables intracellular co-delivery of proteins and chemotherapeutics for cancer therapy. Adv. Mater. 2020, 32, 2000013.

    Article  CAS  Google Scholar 

  58. Cal, P. M. S. D.; Vicente, J. B.; Pires, E.; Coelho, A. V.; Veiros, L. F.; Cordeiro, C.; Gois, P. M. P. Iminoboronates: A new strategy for reversible protein modification. J. Am. Chem. Soc. 2012, 134, 10299–10305.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, Z. Y.; Liu, X.; Hou, M. Y.; Zhou, R. X.; Wu, F.; Yan, J.; Li, W.; Zheng, Y. J.; Zhong, Q. M.; Chen, Y. B. et al. Endocytosis-independent and cancer-selective cytosolic protein delivery via reversible tagging with LAT1 substrate. Adv. Mater. 2022, 34, 2110560.

    Article  CAS  Google Scholar 

  60. Reda, M.; Ngamcherdtrakul, W.; Nelson, M. A.; Siriwon, N.; Wang, R. J.; Zaidan, H. Y.; Bejan, D. S.; Reda, S.; Hoang, N. H.; Crumrine, N. A. et al. Development of a nanoparticle-based immunotherapy targeting PD-L1 and PLK1 for lung cancer treatment. Nat. Commun. 2022, 13, 4261.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, X. D.; Wei, Y. S.; Wu, Y. C.; Yin, L. C. Hypoxia-induced pro-protein therapy assisted by a self-catalyzed nanozymogen. Angew. Chem., Int. Ed. 2020, 59, 22544–22553.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK20220245), National Natural Science Foundation of China (Nos. 52273144 and 82241008), Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 project, Suzhou Key Laboratory of Nanotechnology and Biomedicine, and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xun Liu or Lichen Yin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Liu, N., Zhao, Z. et al. Dynamically crosslinked nanocapsules for the efficient and serum-resistant cytosolic protein delivery. Nano Res. 17, 1760–1771 (2024). https://doi.org/10.1007/s12274-023-5978-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5978-2

Keywords

Navigation