Log in

Synthesis of carbon dots with predictable photoluminescence by the aid of machine learning

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) have wide application potentials in optoelectronic devices, biology, medicine, chemical sensors, and quantum techniques due to their excellent fluorescent properties. However, synthesis of CDs with controllable spectrum is challenging because of the diversity of the CD components and structures. In this report, machine learning (ML) algorithms were applied to help the synthesis of CDs with predictable photoluminescence (PL) under the excitation wavelengths of 365 and 532 nm. The combination of precursors was used as the variable. The PL peaks of the strongest intensity (λs) and the longest wavelength (λl) were used as target functions. Among six investigated ML models, the random forest (RF) model showed outstanding performance in the prediction of the PL peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Efros, A. L.; Brus, L. E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano 2021, 15, 6192–6210.

    Article  PubMed  CAS  Google Scholar 

  2. Wang, G.; Ji, J. W.; Zhang, X. W.; Zhang, Y.; Wang, Q. B.; You, X. Z.; Xu, X. X. Colloidal nanocrystals fluoresced by surface coordination complexes. Sci. Rep. 2014, 4, 5480.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  3. Xu, X. X.; Ji, J. W.; Wang, G.; You, X. Z. Exciton coupling of surface complexes on a nanocrystal surface. Chemphyschem 2014, 15, 2536–2541.

    Article  PubMed  CAS  Google Scholar 

  4. Hinterding, S. O. M.; Salzmann, B. B. V.; Vonk, S. J. W.; Vanmaekelbergh, D.; Weckhuysen, B. M.; Hutter, E. M.; Rabouw, F. T. Single trap states in single CdSe nanoplatelets. ACS Nano 2021, 15, 7216–7225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

    Article  PubMed  CAS  Google Scholar 

  6. Kagan, C. R.; Bassett, L. C.; Murray, C. B.; Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 2021, 121, 3186–3233.

    Article  PubMed  CAS  Google Scholar 

  7. Xu, G. X.; Zeng, S. W.; Zhang, B. T.; Swihart, M. T.; Yong, K. T.; Prasad, P. N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234–12327.

    Article  PubMed  CAS  Google Scholar 

  8. Lan, M. H.; Zhao, S. J.; Zhang, Z. Y.; Yan, L.; Guo, L.; Niu, G. L.; Zhang, J. F.; Zhao, J. F.; Zhang, H. Y.; Wang, P. F. et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res. 2017, 10, 3113–3123.

    Article  CAS  Google Scholar 

  9. Zhu, P. D.; Wang, S. Y.; Zhang, Y. Q.; Li, Y. F.; Liu, Y. P.; Li, W. J.; Wang, Y. Y.; Yan, X.; Luo, D. X. Carbon dots in biomedicine: A review. ACS Appl. Bio Mater. 2022, 5, 2031–2045.

    Article  PubMed  CAS  Google Scholar 

  10. Jiang, Z. Y.; Guan, L. N.; Xu, X. J.; Wang, E. R.; Wang, C. L. Applications of carbon dots in electrochemical energy storage. ACS Appl. Electron. Mater. 2022, 4, 5144–5164.

    Article  CAS  Google Scholar 

  11. Chung, Y. J.; Kim, J.; Park, C. B. Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS Nano 2020, 14, 6470–6497.

    Article  PubMed  CAS  Google Scholar 

  12. Anwar, S.; Ding, H. Z.; Xu, M. S.; Hu, X. L.; Li, Z. Z.; Wang, J. M.; Liu, L.; Jiang, L.; Wang, D.; Dong, C. et al. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl. Bio Mater. 2019, 2, 2317–2338.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, M. R.; Su, R. G.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q. W.; Li, W. J.; Li, N.; Chen, Y. S.; Cai, L. L. et al. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res. 2019, 12, 815–821.

    Article  CAS  Google Scholar 

  14. Sinha, S.; Kim, P. H.; Switzer, C. 2’, 5’-Linked DNA is a template for polymerase-directed DNA synthesis. J. Am. Chem. Soc. 2004, 126, 40–41.

  15. Brumbaugh, J.; Schleifenbaum, A.; Gasch, A.; Sattler, M.; Schultz, C. A dual parameter FRET probe for measuring PKC and PKA activity in living cells. J. Am. Chem. Soc. 2006, 128, 24–25.

    Article  PubMed  CAS  Google Scholar 

  16. Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

    Article  CAS  Google Scholar 

  17. Hassan, M.; Gomes, V. G.; Dehghani, A.; Ardekani, S. M. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018, 11, 1–41.

    Article  Google Scholar 

  18. Ji, Z. H.; Zhang, L. L.; Tang, D. M.; Chen, C. M.; Nordling, T. E. M.; Zhang, Z. D.; Ren, C. L.; Da, B.; Li, X.; Guo, S. Y. et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Res. 2021, 14, 4610–4615.

    Article  ADS  CAS  Google Scholar 

  19. Thakkar, A.; Johansson, S.; Jorner, K.; Buttar, D.; Reymond, J. L.; Engkvist, O. Artificial intelligence and automation in computer aided synthesis planning. React. Chem. Eng. 2021, 6, 27–51.

    Article  CAS  Google Scholar 

  20. Kamakura, Y.; Chinapang, P.; Masaoka, S.; Saeki, A.; Ogasawara, K.; Nishitani, S. R.; Yoshikawa, H.; Katayama, T.; Tamai, N.; Sugimoto, K. et al. Semiconductive nature of lead-based metal-organic frameworks with three-dimensionally extended sulfur secondary building units. J. Am. Chem. Soc. 2020, 142, 27–32.

    Article  PubMed  CAS  Google Scholar 

  21. Talapatra, A.; Uberuaga, B. P.; Stanek, C. R.; Pilania, G. A machine learning approach for the prediction of formability and thermodynamic stability of single and double perovskite oxides. Chem. Mater. 2021, 33, 845–858.

    Article  CAS  Google Scholar 

  22. Lu, S. H.; Zhou, Q. H.; Ma, L.; Guo, Y.; Wang, J. L. Rapid discovery of ferroelectric photovoltaic perovskites and material descriptors via machine learning. Small Methods 2019, 3, 1900360.

    Article  CAS  Google Scholar 

  23. Gladkikh, V.; Kim, D. Y.; Hajibabaei, A.; Jana, A.; Myung, C. W.; Kim, K. S. Machine learning for predicting the band gaps of ABX3 perovskites from elemental properties. J. Phys. Chem. C 2020, 124, 8905–8918.

    Article  CAS  Google Scholar 

  24. Chen, H. A.; Tang, P. H.; Chen, G. J.; Chang, C. C.; Pao, C. W. Microstructure maps of complex perovskite materials from extensive Monte Carlo sampling using machine learning enabled energy model. J. Phys. Chem. Lett. 2021, 12, 3591–3599.

    Article  PubMed  CAS  Google Scholar 

  25. Voznyy, O.; Levina, L.; Fan, J. Z.; Askerka, M.; Jain, A.; Choi, M. J.; Ouellette, O.; Todorovic, P.; Sagar, L. K.; Sargent, E. H. Machine learning accelerates discovery of optimal colloidal quantum dot synthesis. ACS Nano 2019, 13, 11122–11128.

    Article  PubMed  CAS  Google Scholar 

  26. Chen, G. Y.; Zhu, X.; **ng, C. Y.; Wang, Y. K.; Xu, X. X.; Bao, J. C.; Huang, J. H.; Zhao, Y. R.; Wang, X.; Zhou, X. Q. et al. Machine learning-assisted microfluidic synthesis of perovskite quantum dots. Adv. Photonics Res. 2023, 4, 2200230.

    Article  CAS  Google Scholar 

  27. Muyassiroh, D. A. M.; Permatasari, F. A.; Iskandar, F. Machine learning-driven advanced development of carbon-based luminescent nanomaterials. J. Mater. Chem. C 2022, 10, 17431–17450.

    Article  CAS  Google Scholar 

  28. Wang, X.; Wang, B.; Wang, H. S.; Zhang, T. Y.; Qi, H. H.; Wu, Z. Y.; Ma, Y. R.; Huang, H.; Shao, M. W.; Liu, Y. et al. Carbon-dot-based white-light-emitting diodes with adjustable correlated color temperature guided by machine learning. Angew. Chem., Int. Ed. 2021, 60, 12585–12590.

    Article  CAS  Google Scholar 

  29. Luo, J. B.; Chen, J.; Liu, H.; Huang, C. Z.; Zhou, J. High-efficiency synthesis of red carbon dots using machine learning. Chem. Commun. 2022, 58, 9014–9017.

    Article  CAS  Google Scholar 

  30. Senanayake, R. D.; Yao, X. X.; Froehlich, C. E.; Cahill, M. S.; Sheldon, T. R.; McIntire, M.; Haynes, C. L.; Hernandez, R. Machine learning-assisted carbon dot synthesis: Prediction of emission color and wavelength. J. Chem. Inf. Model. 2022, 62, 5918–5928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wang, X. Y.; Chen, B. B.; Zhang, J.; Zhou, Z. R.; Lv, J.; Geng, X. P.; Qian, R. C. Exploiting deep learning for predictable carbon dot design. Chem. Commun. 2021, 57, 532–535.

    Article  CAS  Google Scholar 

  32. Hong, Q.; Wang, X. Y.; Gao, Y. T.; Lv, J.; Chen, B. B.; Li, D. W.; Qian, R. C. Customized carbon dots with predictable optical properties synthesized at room temperature guided by machine learning. Chem. Mater. 2022, 34, 998–1009.

    Article  CAS  Google Scholar 

  33. Chen, J.; Luo, J. B.; Hu, M. Y.; Zhou, J.; Huang, C. Z.; Liu, H. Controlled synthesis of multicolor carbon dots assisted by machine learning. Adv. Funct. Mater. 2023, 33, 2210095.

    Article  CAS  Google Scholar 

  34. Han, Y.; Tang, B. J.; Wang, L.; Bao, H.; Lu, Y. H.; Guan, C. T.; Zhang, L.; Le, M. Y.; Liu, Z.; Wu, M. H. Machine-learning-driven synthesis of carbon dots with enhanced quantum yields. ACS Nano 2020, 14, 14761–14768.

    Article  PubMed  CAS  Google Scholar 

  35. Weiss, C. J. A creative commons textbook for teaching scientific computing to chemistry students with python and jupyter notebooks. J. Chem. Educ. 2021, 98, 489–494.

    Article  CAS  Google Scholar 

  36. Lafuente, D.; Cohen, B.; Fiorini, G.; García, A. A.; Bringas, M.; Morzan, E.; Onna, D. A gentle introduction to machine learning for chemists: An undergraduate workshop using python notebooks for visualization, data processing, analysis, and modeling. J. Chem. Educ. 2021, 98, 2892–2898.

    Article  CAS  Google Scholar 

  37. Mombrú, D.; Romero, M.; Faccio, R.; Mombrú, Á. W. Electronic structure of edge-modified graphene quantum dots interacting with polyaniline: Vibrational and optical properties. J. Phys. Chem. C 2017, 121, 16576–16583.

    Article  Google Scholar 

  38. Wang, L.; Li, W. T.; Yin, L. Q.; Liu, Y. J.; Guo, H. Z.; Lai, J. W.; Han, Y.; Li, G.; Li, M.; Zhang, J. H. et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, eabb6772.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tepliakov, N. V.; Kundelev, E. V.; Khavlyuk, P. D.; **ong, Y.; Leonov, M. Y.; Zhu, W. R.; Baranov, A. V.; Fedorov, A. V.; Rogach, A. L.; Rukhlenko, I. D. sp2-sp3-Hybridized atomic domains determine optical features of carbon dots. ACS Nano 2019, 13, 10737–10744.

    Article  PubMed  CAS  Google Scholar 

  40. Semenok, D. V.; Zhou, D.; Kvashnin, A. G.; Huang, X. L.; Galasso, M.; Kruglov, I. A.; Ivanova, A. G.; Gavriliuk, A. G.; Chen, W. H.; Tkachenko, N. V. et al. Novel strongly correlated europium superhydrides. J. Phys. Chem. Lett. 2021, 12, 32–40.

    Article  PubMed  CAS  Google Scholar 

  41. Righetto, M.; Privitera, A.; Fortunati, I.; Mosconi, D.; Zerbetto, M.; Curri, M. L.; Corricelli, M.; Moretto, A.; Agnoli, S.; Franco, L. et al. Spectroscopic insights into carbon dot systems. J. Phys. Chem. Lett. 2017, 8, 2236–2242.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22175095).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianchun Bao, **uli Du or **angxing Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ng, C., Chen, G., Zhu, X. et al. Synthesis of carbon dots with predictable photoluminescence by the aid of machine learning. Nano Res. 17, 1984–1989 (2024). https://doi.org/10.1007/s12274-023-5893-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5893-6

Keywords

Navigation