Log in

Protein-based nanocarriers for efficient Etoposide delivery and cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Etoposide, a DNA damage-inducing agent, is widely used for malignant tumors. However, insufficient solubility, poor bioavailability and adverse events limited the treatment outcomes and prognosis. To address this, we here developed a novel biosynthetic and unfolded protein nanocarrier to load and deliver Etoposide. Compared with the pristine agent, the loading efficiency of the nanoformulated drug increased four times and the half-life time increased to 17.6 h with controlled release of the Etoposide for 6 days. The half-maximal inhibitory concentration at 48 h was lower than that at 24 h, suggesting a long-acting antitumor property. Moreover, the anti-tumor performance in rat models was significantly enhanced by improving solubility and cellular internalization. Additionally, immunogenicity and adverse toxicologic effects such as kidney and liver toxicity were significantly weakened. Therefore, the assembly strategy enables etoposide with higher efficacy, bioavailability, and safety, and has great potential in the comprehensive treatment of malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davey, S. G. Engineering etoposide. Nat. Rev. Chem. 2020, 4, 63–63.

    Article  Google Scholar 

  2. Al-Ali, A. A. A.; Sandra, L.; Versweyveld, D.; Pijpers, I.; Dillen, L.; Vermeulen, A.; Snoeys, J.; Holm, R.; Nielsen, C. U. High-dose etoposide formulations do not saturate intestinal p-glycoprotein: Development, stability, and pharmacokinetics in sprague-dawley rats. Int. J. Pharm. 2020, 583, 119399.

    Article  CAS  Google Scholar 

  3. Arumugam, S. P.; Balakrishnan, S. B.; Ganesan, V.; Munisamy, M.; Kuppu, S. V.; Narayanan, V.; Baskaralingam, V.; Jeyachandran, S.; Thambusamy, S. In-vitro dissolution and microbial inhibition studies on anticancer drug etoposide with β-cyclodextrin. Mater. Sci. Eng. C 2019, 102, 96–105.

    Article  CAS  Google Scholar 

  4. Zhu, Y. J.; Zhu, R. R.; Wang, M.; Wu, B.; He, X. L.; Qian, Y. C.; Wang, S. L. Anti-metastatic and anti-angiogenic activities of core-shell SiO2@LDH loaded with etoposide in non-small cell lung cancer. Adv. Sci. 2016, 3, 1600229.

    Article  Google Scholar 

  5. Beauté, L.; McClenaghan, N.; Lecommandoux, S. Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Adv. Drug Deliv. Rev. 2019, 138, 148–166.

    Article  Google Scholar 

  6. Abdel-Bar, H. M.; Walters, A. A.; Wang, J. T. W.; Al-Jamal, K. T. Combinatory delivery of etoposide and siCD47 in a lipid polymer hybrid delays lung tumor growth in an experimental melanoma lung metastatic model. Adv. Healthcare Mater. 2021, 10, 2001853.

    Article  CAS  Google Scholar 

  7. Su, J. J.; Lu, S.; Wei, Z.; Li, B.; Li, J. J.; Sun, J.; Liu, K.; Zhang, H. J.; Wang, F. Biocompatible inorganic nanoagent for efficient synergistic tumor treatment with augmented antitumor immunity. Small 2022, 18, 2200897.

    Article  CAS  Google Scholar 

  8. Liu, B.; Gu, X. Q.; Sun, Q. N.; Jiang, S. J.; Sun, J.; Liu, K.; Wang, F.; Wei, Y. Injectable in situ induced robust hydrogel for photothermal therapy and bone fracture repair. Adv. Funct. Mater. 2021, 31, 2010779.

    Article  CAS  Google Scholar 

  9. Liu, B.; Sun, J.; Zhu, J. J.; Li, B.; Ma, C.; Gu, X. Q.; Liu, K.; Zhang, H. J.; Wang, F.; Su, J. J. et al. Injectable and NIR-responsive DNA-inorganic hybrid hydrogels with outstanding photothermal therapy. Adv. Mater. 2020, 32, 2004460.

    Article  CAS  Google Scholar 

  10. Su, J. J.; Lu, S.; Jiang, S. J.; Li, B.; Liu, B.; Sun, Q. N.; Li, J. J.; Wang, F.; Wei, Y. Engineered protein photo-thermal hydrogels for outstanding in situ tongue cancer therapy. Adv. Mater. 2021, 33, 2100619.

    Article  CAS  Google Scholar 

  11. Wang, N.; Cheng, X. J.; Li, N.; Wang, H.; Chen, H. Y. Nanocarriers and their loading strategies. Adv. Healthcare Mater. 2019, 8, 1801002.

    Article  Google Scholar 

  12. Fenton, O. S.; Olafson, K. N.; Pillai, P. S.; Mitchell, M. J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, 1705328.

    Article  Google Scholar 

  13. Wei, G. Q.; Wang, Y.; Huang, X. H.; Hou, H. B.; Zhou, S. B. Peptide-based nanocarriers for cancer therapy. Small Methods 2018, 2, 1700358.

    Article  Google Scholar 

  14. Jiang, Q.; Zhao, S.; Liu, J. B.; Song, L. L.; Wang, Z. G.; Ding, B. Q. Rationally designed DNA-based nanocarriers. Adv. Drug Deliv. Rev. 2019, 147, 2–21.

    Article  CAS  Google Scholar 

  15. Ruman, U.; Fakurazi, S.; Masarudin, M. J.; Hussein, M. Z. Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities. Int. J. Nanomedicine 2020, 15, 1437–1456.

    Article  CAS  Google Scholar 

  16. Li, Y. X.; Sun, J.; Li, J. J.; Liu, K.; Zhang, H. J. Engineered protein nanodrug as an emerging therapeutic tool. Nano Res. 2022, 15, 5161–5172.

    Article  Google Scholar 

  17. Bunschoten, A.; Buckle, T.; Kuil, J.; Luker, G. D.; Luker, K. E.; Nieweg, O. E.; Van Leeuwen, F. W. B. Targeted non-covalent self-assembled nanoparticles based on human serum albumin. Biomaterials 2012, 33, 867–875.

    Article  CAS  Google Scholar 

  18. Pitek, A. S.; Jameson, S. A.; Veliz, F. A.; Shukla, S.; Steinmetz, N. F. Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials 2016, 89, 89–97.

    Article  CAS  Google Scholar 

  19. Su, J. J.; Liu, B. M.; He, H. N.; Ma, C.; Wei, B.; Li, M.; Li, J. J.; Wang, F.; Sun, J.; Liu, K. et al. Engineering high strength and supertoughness of unfolded structural proteins and their extraordinary anti-adhesion performance for abdominal hernia repair. Adv. Mater. 2022, 34, 2200842.

    Article  CAS  Google Scholar 

  20. Zhao, K. L.; Liu, Y. W.; Ren, Y. B.; Li, B.; Li, J. J.; Wang, F.; Ma, C.; Ye, F. F.; Sun, J.; Zhang, H. J. et al. Molecular engineered crown-ether-protein with strong adhesion over a wide temperature range from −196 to 200 °C. Angew. Chem., Int. Ed. 2022, 61, e202207425.

    Article  CAS  Google Scholar 

  21. Wang, Z. L.; Gu, X. Q.; Li, B.; Li, J. J.; Wang, F.; Sun, J.; Zhang, H. J.; Liu, K.; Guo, W. S. Molecularly engineered protein glues with superior adhesion performance. Adv. Mater. 2022, 34, 2204590.

    Article  CAS  Google Scholar 

  22. Zhang, P.; Li, J. J.; Sun, J.; Li, Y. X.; Liu, K.; Wang, F.; Zhang, H. J.; Su, J. J. Bioengineered protein fibers with anti-freezing mechanical behaviors. Adv. Funct. Mater. 2022, 32, 2209006.

    Article  CAS  Google Scholar 

  23. Wei, Z.; Sun, J.; Lu, S.; Liu, Y. W.; Wang, B.; Zhao, L.; Wang, Z. L.; Liu, K.; Li, J. J.; Su, J. J. et al. An engineered protein-Au bioplaster for efficient skin tumor therapy. Adv. Mater. 2022, 34, 2110062.

    Article  CAS  Google Scholar 

  24. Li, J. J.; Li, B.; Sun, J.; Ma, C.; Wan, S. K.; Li, Y. X.; Göstl, R.; Herrmann, A.; Liu, K.; Zhang, H. J. Engineered near-infrared fluorescent protein assemblies for robust bioimaging and therapeutic applications. Adv. Mater. 2020, 32, 2000964.

    Article  CAS  Google Scholar 

  25. Wan, S. K.; Cheng, W. H.; Li, J. J.; Wang, F.; **ng, X. W.; Sun, J.; Zhang, H. J.; Liu, K. Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Res. 2022, 15, 9192–9198.

    Article  CAS  Google Scholar 

  26. Zhao, X. Y.; Li, X.; Li, B.; Sun, Y.; Shi, Y. J.; Shen, H. X.; Wang, F.; Li, J. J.; Sharopov, F.; Mukhiddinov, Z. et al. A robust protein-peptide co-assembling nanoformulation (PePCAN) platform with significant cell-entry characteristics for targeted cancer therapy. Chem. Eng. J. 2023, 453, 139886.

    Article  CAS  Google Scholar 

  27. Zhao, L.; Gu, X. Q.; Jiang, F. Q.; Li, B.; Lu, S.; Wang, F.; Sun, Y.; Liu, K.; Li, J. J. Long-lasting proteinaceous nanoformulation for tumor imaging and therapy. ACS Omega 2022, 7, 31299–31308.

    Article  CAS  Google Scholar 

  28. Su, J. J.; Sun, Q. N.; Lin, S.; Lu, S.; Zhang, Q.; Li, Y. X.; Li, B.; Sun, Y.; Liu, K.; Zhang, H. J. et al. Biosynthetic and unfolded protein nanocarriers for chemotherapeutic drugs in oral cancers: Improved bioavailability and safety of chemotherapeutics. Adv. Funct. Mater. 2022, 32, 2204271.

    Article  CAS  Google Scholar 

  29. Ma, C.; Li, B.; Zhang, J. R.; Sun, Y.; Li, J. J.; Zhou, H. C.; Shen, J. L.; Gu, R.; Qian, J. C.; Fan, C. H. et al. Significantly improving the bioefficacy for rheumatoid arthritis with supramolecular nanoformulations. Adv. Mater. 2021, 33, 2100098.

    Article  CAS  Google Scholar 

  30. Wang, S. D.; Li, B.; Zhang, H. L.; Chen, J. Y.; Sun, X.; Xu, J.; Ren, T. T.; Zhang, Y. Y.; Ma, C.; Guo, W. et al. Improving bioavailability of hydrophobic prodrugs through supramolecular nanocarriers based on recombinant proteins for osteosarcoma treatment. Angew. Chem., Int. Ed. 2021, 60, 11252–11256.

    Article  CAS  Google Scholar 

  31. Wang, C. Y.; Zhang, J. R.; Li, B.; Zuo, J. L.; Li, Y. X.; Sun, Y.; Wang, F.; Liu, K.; Li, J. J. High-efficiency treatment for osteoarthritis via self-assembled dual-functionalized nanobiologics. ACS Biomater. Sci. Eng. 2022, 8, 3320–3328.

    Article  CAS  Google Scholar 

  32. Zhang, J. R.; Sun, Y.; Qu, Q.; Li, B.; Zhang, L. L.; Gu, R.; Zuo, J. L.; Wei, W.; Ma, C.; Liu, L. et al. Engineering non-covalently assembled protein nanoparticles for long-acting gouty arthritis therapy. J. Mater. Chem. B 2021, 9, 9923–9931.

    Article  CAS  Google Scholar 

  33. Golombek, S. K.; May, J. N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38.

    Article  CAS  Google Scholar 

  34. Izci, M.; Maksoudian, C.; Manshian, B. B.; Soenen, S. J. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem. Rev. 2021, 121, 1746–1803.

    Article  CAS  Google Scholar 

  35. Lázaro, I. A.; Haddad, S.; Sacca, S.; Orellana-Tavra, C.; Fairen-Jimenez, D.; Forgan, R. S. Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem 2017, 2, 561–578.

    Article  Google Scholar 

  36. You, X. R.; Wang, L. Y.; Wang, L.; Wu, J. Rebirth of aspirin synthesis by-product: Prickly poly(salicylic acid) nanoparticles as self-anticancer drug carrier. Adv. Funct. Mater. 2021, 31, 2100805.

    Article  CAS  Google Scholar 

  37. Sengupta, S.; Tyagi, P.; Chandra, S.; Kochupillai, V.; Gupta, S. K. Encapsulation in cationic liposomes enhances antitumour efficacy and reduces the toxicity of etoposide, a topo-isomerase II inhibitor. Pharmacology 2001, 62, 163–171.

    Article  CAS  Google Scholar 

  38. Zhu, J. W.; Chen, J. T.; Song, D. M.; Zhang, W. D.; Guo, J. P.; Cai, G. P.; Ren, Y. H.; Wan, C. Y.; Kong, L. Y.; Yu, W. Y. Real-time monitoring of etoposide prodrug activated by hydrogen peroxide with improved safety. J. Mater. Chem. B 2019, 7, 7548–7557.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2020YFA0712102, 2018YFA0902600, 2021YFF0701800, 2020YFA0211100), the National Natural Science Foundation of China (Nos. 52222214, 22020102003, 22125701, 21907088, 51922077, 51872205), the Youth Innovation Promotion Association of CAS (No. 2020228), Natural Science Foundation of Jilin Province (No. 20210101366JC), the Foundation of National Facility for Translational Medicine (Shanghai) (No. TMSK-2020-012). All animal experiments were conducted in compliance with the Animal Management Rules of the Ministry of Health of the People’s Republic of China and with the approval of the Institutional Animal Care and Use Committee of the Animal Experiment Center of Peking University (No. LA2019313).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Wang or Yang Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Xu, X., Li, B. et al. Protein-based nanocarriers for efficient Etoposide delivery and cancer therapy. Nano Res. 16, 11216–11220 (2023). https://doi.org/10.1007/s12274-023-5841-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5841-5

Keywords

Navigation