Log in

Exploring the regulatory effect of stacked layers on moiré excitons in twisted WSe2/WSe2/WSe2 homotrilayer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Moiré superlattices in van der Waals structures have emerged as a powerful platform for studying the novel quantum properties of two-dimensional materials. The periodic moiré patterns generated by these structures lead to the formation of flat mini-bands, which alter the electronic energy bands of the material. The resulting flat electronic bands can greatly enhance strong correlative interactions between electrons, leading to the emergence of exotic quantum phenomena, including moiré phonons and moiré excitons. While extensive research has been conducted on the exotic quantum phenomena in twisted bilayers of transition metal dichalcogenides (TMDs), and the regulatory effect of stacked layers on moiré excitons remains unexplored. In this study, we report the fabrication of a twisted WSe2/WSe2/WSe2 homotrilayer with two twist angles and investigate the influence of stacked layers on moiré excitons. Our experiments reveal multiple moiré exciton splitting peaks in the twisted trilayer, with moiré potential depths of 78 and 112 meV in the bilayer and trilayer homostructures, respectively. We also observed the splitting of the moiré excitons at 90 K, indicating the presence of a deeper moiré potential in the twisted trilayer. Moreover, we demonstrate that stacked layers can tune the moiré excitons by manipulating temperature, laser power, and magnetic field. Our results provide a new physical model for studying moiré superlattices and their quantum properties, which could potentially pave the way for the development of quantum optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; Leroy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430.

    Article  CAS  Google Scholar 

  2. Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Effect of layered-coupling in twisted WSe2 Moiré superlattices. Nano Res. 2023, 16, 3435–3442.

    Article  Google Scholar 

  3. Mahdikhanysarvejahany, F.; Shanks, D. N.; Klein, M.; Wang, Q.; Koehler, M. R.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Monti, O. L. A.; LeRoy, B. J. et al. Localized interlayer excitons in MoSe2-WSe2 heterostructures without a Moiré potential. Nat. Commun. 2022, 13, 5354.

    Article  CAS  Google Scholar 

  4. Wu, B.; Zheng, H. H.; Ding, J. N.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. Observation of interlayer excitons in trilayer type-II transition metal dichalcogenide heterostructures. Nano Res. 2022, 15, 9588–9594.

    Article  CAS  Google Scholar 

  5. Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Liu, Y. P. Evidence for interlayer coupling and Moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 2023, 16, 3429–3434.

    Article  CAS  Google Scholar 

  6. Shi, Z. W.; **, C. H.; Yang, W.; Ju, L.; Horng, J.; Lu, X. B.; Bechtel, H. A.; Martin, M. C.; Fu, D. Y.; Wu, J. Q. et al. Gate-dependent pseudospin mixing in graphene/boron nitride Moiré superlattices. Nat. Phys. 2014, 10, 743–747.

    Article  CAS  Google Scholar 

  7. Bao, X. T.; Wu, X. X.; Ke, Y. X.; Wu, K. M.; Jiang, C. X.; Wu, B.; Li, J.; Yue, S.; Zhang, S.; Shi, J. W. et al. Giant out-of-plane exciton emission enhancement in two-dimensional indium selenide via a plasmonic nanocavity. Nano Lett. 2023, 23, 3716–3723.

    Article  CAS  Google Scholar 

  8. Wallbank, J. R.; Patel, A. A.; Mucha-Kruczyński, M.; Geim, A. K.; Fal’ko, V. I. Generic miniband structure of graphene on a hexagonal substrate. Phys. Rev. B 2013, 87, 245408.

    Article  Google Scholar 

  9. Tan, Q. H.; Rasmita, A.; Zhang, Z. W.; Cai, H. B.; Cai, X. B.; Dai, X. R.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Gao, W. B. Layer-dependent correlated phases in WSe2/MoS2 Méiré superlattice. Nat. Mater. 2023, 22, 605–611.

    Article  CAS  Google Scholar 

  10. Li, S. F.; Zheng, H. H.; Ding, J. N.; Wu, B.; He, J.; Liu, Z. W.; Liu, Y. P. Dynamic control of Moiré potential in twisted WS2-WSe2 heterostructures. Nano Res. 2022, 15, 7688–7694.

    Article  CAS  Google Scholar 

  11. Shi, J. W.; Wu, X. X.; Wu, K. M.; Zhang, S.; Sui, X.; Du, W. N.; Yue, S.; Liang, Y.; Jiang, C. X.; Wang, Z. et al. Giant enhancement and directional second harmonic emission from monolayer WS2 on silicon substrate via Fabry–Pérot micro-cavity. ACS Nano 2022, 16, 13933–13941.

    Article  CAS  Google Scholar 

  12. Li, H.; Papadakis, R.; Hussain, T.; Karton, A.; Liu, J. W. Moiré patterns arising from bilayer graphone/graphene superlattice. Nano Res. 2020, 13, 1060–1064.

    Article  CAS  Google Scholar 

  13. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    Article  CAS  Google Scholar 

  14. Wang, X.; **ao, C. X.; Park, H.; Zhu, J. Y.; Wang, C.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; **ao, D.; Gamelin, D. R. et al. Light-induced ferromagnetism in Moiré superlattices. Nature 2022, 604, 468–473.

    Article  CAS  Google Scholar 

  15. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

    Article  CAS  Google Scholar 

  16. R.; Jiang, L. L.; Wu, S.; Lyu, B.; Li, H. Y.; Chittari, B. L.; Watanabe, K.; Taniguchi, T.; Shi, Z. W.; Jung, J. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene Moiré superlattice. Nat. Phys. 2019, 15, 237–241.

    Article  Google Scholar 

  17. Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Liu, Y. P. Enhanced interlayer neutral excitons and trions in MoSe2/MoS2/MoSe2 trilayer heterostructure. Nano Res. 2022, 15, 5640–5645.

    Article  CAS  Google Scholar 

  18. Miao, S. N.; Wang, T. N.; Huang, X.; Chen, D. X.; Lian, Z.; Wang, C.; Blei, M.; Taniguchi, T.; Watanabe, K.; Tongay, S. et al. Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 Moiré superlattice. Nat. Commun. 2021, 12, 3608.

    Article  CAS  Google Scholar 

  19. Wu, B.; Wang, Y. P.; Zhong, J. H.; Zeng, C.; Madoune, Y.; Zhu, W. T.; Liu, Z. W.; Liu, Y. P. Observation of double indirect interlayer exciton in MoSe2/WSe2 leteroostruttuee. Nano Res. 2022, 15, 2661–2666.

    Article  CAS  Google Scholar 

  20. Chen, D. X.; Lian, Z.; Huang, X.; Su, Y.; Rashetnia, M.; Yan, L.; Blei, M.; Taniguchi, T.; Watanabe, K.; Tongay, S. et al. Tuning Moiré excitons and correlated electronic states through layer degree of freedom. Nat. Commun. 2022, 13, 4810.

    Article  CAS  Google Scholar 

  21. Bai, Y. S.; Zhou, L.; Wang, J.; Wu, W. J.; McGilly, L. J.; Halbertal, D.; Lo, C. F. B.; Liu, F.; Ardelean, J.; Rivera, P. et al. Excitons in strain-induced one-dimensional Moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 2020, 19, 1068–1073.

    Article  CAS  Google Scholar 

  22. Wang, X. Y.; Zhao, Y. Z.; Kong, X.; Zhang, Q.; Ng, H. K.; Lim, S. X.; Zheng, Y.; Wu, X.; Watanabe, K.; Xu, Q. H. et al. Dynamic tuning of moire superlattice morphology by laser modification. ACS Nano 2022, 16, 8172–8180.

    Article  CAS  Google Scholar 

  23. Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

    Article  CAS  Google Scholar 

  24. Yoo, Y.; Degregorio, Z. P.; Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 14281–14287.

    Article  CAS  Google Scholar 

  25. Zhao, S. L.; Wang, E. Q.; Üzer, E. A.; Guo, S. F.; Qi, R. S.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Nilges, T.; Gao, P. et al. Anisotropic Moiré optical transitions in twisted monolayer/bilayer phosphorene heterostructures. Nat. Commun. 2021, 12, 3947.

    Article  CAS  Google Scholar 

  26. Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.

    Article  CAS  Google Scholar 

  27. Tran, K.; Moody, G.; Wu, F. C.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M. et al. Evidence for Moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

    Article  CAS  Google Scholar 

  28. Utama, M. I. B.; Zeng, H. F.; Sadhukhan, T.; Dasgupta, A.; Gavin, S. C.; Ananth, R.; Lebedev, D.; Wang, W.; Chen, J. S.; Watanabe, K. et al. Chemomechanical modification of quantum emission in monolayer WSe2. Nat. Commun. 2023, 14, 2193.

    Article  CAS  Google Scholar 

  29. Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

    Article  Google Scholar 

  30. Elizabeth, M., Liu, X., Hu, Z. H., Fieramosca, A., Huang, Y. Q., Du, W., Liu, S., Zhao, J. X., Watanabe, K., Taniguchi, T., and **ong, Q. H. Evidence for moire trions in twisted MoSe2 homobilayers. Nano Lett. 2021, 21, 4461–4468.

    Article  Google Scholar 

  31. Li, Z. D.; Lu, X. B.; Cordovilla Leon, D. F.; Lyu, Z.; **e, H. C.; Hou, J. Z.; Lu, Y. Z.; Guo, X. Y.; Kaczmarek, A.; Taniguchi, T. et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano 2021, 15, 1539–1547.

    Article  CAS  Google Scholar 

  32. Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

    Article  CAS  Google Scholar 

  33. Mahdikhanysarvejahany, F.; Shanks, D. N.; Muccianti, C.; Badada, B. H.; Idi, I.; Alfrey, A.; Raglow, A.; Koehler, M. R.; Mandrus, D. G.; Taniguchi, T. et al. Temperature dependent Moiré trap** of interlayer excitons in MoSe2-WSe2 heterostructures. npj 2D Mater. Appl. 2021, 5, 67.

    Article  CAS  Google Scholar 

  34. Fang, Y. T.; Wang, L.; Sun, Q. L.; Lu, T. P.; Deng, Z.; Ma, Z. G.; Jiang, Y.; Jia, H. Q.; Wang, W. X.; Zhou, J. M. et al. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718.

    Article  CAS  Google Scholar 

  35. Wang, X.; Zhu, J. Y.; Seyler, K. L.; Rivera, P.; Zheng, H. Y.; Wang, Y. Q.; He, M. H.; Taniguchi, T.; Watanabe, K.; Yan, J. Q. et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol. 2021, 16, 1208–1213.

    Article  CAS  Google Scholar 

  36. Brotons-Gisbert, M.; Baek, H.; Molina-Sánchez, A.; Campbell, A.; Scerri, E.; White, D.; Watanabe, K.; Taniguchi, T.; Bonato, C.; Gerardot, B. D. Spin-layer locking of interlayer excitons trapped in Moiré potentials. Nat. Mater. 2020, 19, 630–636.

    Article  CAS  Google Scholar 

  37. Zhang, Z. W.; Huang, Z. W.; Li, J.; Wang, D.; Lin, Y.; Yang, X. D.; Liu, H.; Liu, S.; Wang, Y. L.; Li, B. et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol. 2022, 17, 493–499.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was carefully planned and executed by Y. P. L., while H. H. Z. expertly fabricated the device and conducted Raman and PL characterizations. The low-temperature measurements were carried out by a team consisting of B. W., H. H. Z., and S. F.L. The critical analysis and interpretation of the data were conducted by a group of researchers, including H. H. Z., Y. P. L., B. W., Z. W. L., J. H., J. T. W., and C. T. W. The manuscript was initially drafted by H. H. Z., Y. P. L., and Z. W. L. All authors contributed significantly to the manuscript review and refinement. The study presented herein was generously supported by multiple funding agencies, including the National Natural Science Foundation of China (No. 61775241), the Hunan Province Key Research and Development Project (No. 2019GK2233), the Hunan Provincial Science Fund for Distinguished Young Scholars (No. 2020JJ2059), the National Natural Science Foundation of China (Nos. 62090035 and U19A2090), the Youth Innovation Team (No. 2019012) of CSU, the Key Program of Science and Technology Department of Hunan Province (Nos. 2019XK2001 and 2020XK2001), the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20190806144418859), and the Postdoctoral Science Foundation of China (No. 2022M713546). The authors also express their gratitude to the High-Performance Complex Manufacturing Key State Lab Project, Central South University (No. ZZYJKT2020-12), and the Australian Research Council (ARC Discovery Project, DP180102976) for their support of ZWL. CTW is grateful for support from the National Natural Science Foundation of China (No. 11974387) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB33000000). H. H. Z. acknowledges support from the Postdoctoral Science Foundation of China (No. 2022M713546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan** Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Wu, B., Wang, CT. et al. Exploring the regulatory effect of stacked layers on moiré excitons in twisted WSe2/WSe2/WSe2 homotrilayer. Nano Res. 16, 10573–10579 (2023). https://doi.org/10.1007/s12274-023-5822-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5822-8

Navigation