Log in

MicroRNA-208a silencing against myocardial ischemia/reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

MicroRNA-208a (miR-208a) plays critical roles in the severe fibrosis and heart failure post myocardial ischemia/reperfusion (IR) injury. MiR-208a inhibitor (mI) with complementary RNA sequence can silence the expression of miR-208a, while it is challenging to achieve efficient and myocardium-targeted delivery. Herein, biomimetic nanocomplexes (NCs) reversibly coated with red blood cell membrane (RM) were developed for the myocardial delivery of mI. To construct the NCs, membrane-penetrating helical polypeptide (PG) was first adopted to condense mI and form the cationic inner core, which subsequently adsorbed catalase (CAT) via electrostatic interaction followed by surface coating with RM. The membrane-coated NCs enabled prolonged blood circulation after systemic administration, and could accumulate in the injured myocardium via passive targeting. In the oxidative microenvironment of injured myocardium, CAT decomposed H2O2 to produce O2 bubbles, which drove the shedding of the outer RM to expose the positively charged inner core, thus facilitated effective internalization by cardiac cells. Based on the combined contribution of mI-mediated miR-208a silencing and CAT-mediated alleviation of oxidative stress, NCs effectively ameliorated the myocardial microenvironment, hence reducing the infarct size as well as fibrosis and promoting recovery of cardiac functions. This study provides an effective strategy for the cytosolic delivery of nucleic acid cargoes in the myocardium, and it renders an enlightened approach to resolve the blood circulation/cell internalization dilemma of cell membrane-coated delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heusch, G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat. Rev. Cardiol. 2020, 17, 773–789.

    Google Scholar 

  2. Wang, Y.; Hou, M. Y.; Duan, S. Z.; Zhao, Z. Y.; Wu, X. J.; Chen, Y. B.; Yin, L. C. Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the antiinflammatory treatment of ischemia-reperfusion (IR) injury. Bioact. Mater. 2022, 17, 320–333.

    CAS  Google Scholar 

  3. Lan, M.; Hou, M. Y.; Yan, J.; Deng, Q. R.; Zhao, Z. Y.; Lv, S. X.; Dang, J. J.; Yin, M. Y.; Ji, Y.; Yin, L. C. Cardiomyocyte-targeted anti-inflammatory nanotherapeutics against myocardial ischemia reperfusion (IR) injury. Nano Res. 2022, 15, 9125–9134.

    CAS  Google Scholar 

  4. Liu, M. R.; Abad, B. L. D.; Cheng, K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv. Drug Deliv. Rev. 2021, 173, 504–519.

    CAS  Google Scholar 

  5. Lesizza, P.; Prosdocimo, G.; Martinelli, V.; Sinagra, G.; Zacchigna, S.; Giacca, M. Single-dose intracardiac injection of pro-regenerative MicroRNAs improves cardiac function after myocardial infarction. Circ. Res. 2017, 120, 1298–1304.

    CAS  Google Scholar 

  6. Zhou, Y.; Liang, Q. J.; Wu, X. J.; Duan, S. Z.; Ge, C. L.; Ye, H.; Lu, J. H.; Zhu, R. Y.; Chen, Y. B.; Meng, F. H. et al. siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes.. Adv. Mater 2023, 35, 2210691.

    CAS  Google Scholar 

  7. Zhu, D. S.; Li, Z. H.; Huang, K.; Caranasos, T. G.; Rossi, J. S.; Cheng, K. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat. Commun. 2021, 12, 1412.

    CAS  Google Scholar 

  8. Ji, M. S.; Jeong, M. H.; Ahn, Y. K.; Kim, S. H.; Kim, Y. J.; Chae, S. C.; Hong, T. J.; Seong, I. W.; Chae, J. K.; Kim, C. J. et al. Clinical outcome of statin plus ezetimibe versus high-intensity statin therapy in patients with acute myocardial infarction propensity-score matching analysis. Int. J. Cardiol. 2016, 225, 50–59.

    Google Scholar 

  9. Steffens, S.; Montecucco, F.; Mach, F. The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thromb. Haemost. 2009, 102, 240–247.

    CAS  Google Scholar 

  10. Tu, Z. X.; Zhong, Y. L.; Hu, H. Z.; Shao, D.; Haag, R. N.; Schirner, M.; Lee, J.; Sullenger, B.; Leong, K. W. Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 2022, 7, 557–574.

    CAS  Google Scholar 

  11. Lu, Y. F.; Li, C.; Chen, Q. J.; Liu, P. X.; Guo, Q.; Zhang, Y.; Chen, X. L.; Zhang, Y. J.; Zhou, W. X.; Liang, D. H. et al. Microthrombustargeting micelles for neurovascular remodeling and enhanced microcirculatory perfusion in acute ischemic stroke. Adv. Mater. 2019, 31, 1808361.

    Google Scholar 

  12. Chistiakov, D. A.; Orekhov, A. N.; Bobryshev, Y. V. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J. Mol. Cell. Cardiol. 2016, 94, 107–121.

    CAS  Google Scholar 

  13. Small, E. M.; Frost, R. J. A.; Olson, E. N. MicroRNAs add a new dimension to cardiovascular disease. Circulation 2010, 121, 1022–1032.

    Google Scholar 

  14. **, K. Y.; Gao, S.; Yang, P. H.; Guo, R. F.; Li, D.; Zhang, Y. S.; Lu, X. Y.; Fan, G. W.; Fan, X. H. Single-cell RNA sequencing reveals the temporal diversity and dynamics of cardiac immunity after myocardial infarction. Small Methods 2022, 6, 2100752.

    CAS  Google Scholar 

  15. Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297.

    CAS  Google Scholar 

  16. Liu, B. H.; Wang, B.; Zhang, X. K.; Lock, R.; Nash, T.; Vunjak-Novakovic, G. Cell type-specific microRNA therapies for myocardial infarction. Sci. Transl. Med. 2021, 13, eabd0914.

    CAS  Google Scholar 

  17. Pinchi, E.; Frati, P.; Aromatario, M.; Cipolloni, L.; Fabbri, M.; La Russa, R.; Maiese, A.; Neri, M.; Santurro, A.; Scopetti, M. et al. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J. Cell. Mol. Med. 2019, 23, 6005–6016.

    CAS  Google Scholar 

  18. Alrob, O. A.; Khatib, S.; Naser, S. A. MicroRNAs 33, 122, and 208: A potential novel targets in the treatment of obesity, diabetes, and heart-related diseases. J. Physiol. Biochem. 2017, 73, 307–314.

    CAS  Google Scholar 

  19. Zhao, X.; Wang, Y.; Sun, X. L. The functions of microRNA-208 in the heart. Diabetes Res. Clin. Pract. 2020, 160, 108004.

    CAS  Google Scholar 

  20. Callis, T. E.; Pandya, K.; Seok, H. Y.; Tang, R. H.; Tatsuguchi, M.; Huang, Z. P.; Chen, J. F.; Deng, Z. L.; Gunn, B.; Shumate, J. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 2009, 119, 2772–2786.

    CAS  Google Scholar 

  21. Linhares, V. L. F.; Almeida, N. A. S.; Menezes, D. C.; Elliott, D. A.; Lai, D.; Beyer, E. C.; De Carvalho, A. C. C.; Costa, M. W. Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovasc. Res. 2004, 64, 402–411.

    CAS  Google Scholar 

  22. Morel, S.; Braunersreuther, V.; Chanson, M.; Bouis, D.; Rochemont, V.; Foglia, B.; Pelli, G.; Sutter, E.; Pinsky, D. J.; Mach, F. et al. Endothelial Cx40 limits myocardial ischaemia/reperfusion injury in mice. Cardiovasc. Res. 2014, 102, 329–337.

    CAS  Google Scholar 

  23. Werner, J. H.; Rosenberg, J. H.; Um, J. Y.; Moulton, M. J.; Agrawal, D. K. Molecular discoveries and treatment strategies by direct reprogramming in cardiac regeneration. Transl. Res. 2019, 203, 73–87.

    CAS  Google Scholar 

  24. Ko, T.; Nomura, S.; Yamada, S.; Fujita K.; Fujita T.; Satoh, M.; Oka, C.; Katoh, M.; Ito, M.; Katagiri, M. et al. Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis. Nat. Commun. 2022, 13, 3275.

    CAS  Google Scholar 

  25. Rinoldi, C.; Zargarian, S. S.; Nakielski, P.; Li, X. R.; Liguori, A.; Petronella, F.; Presutti, D.; Wang, Q. S.; Costantini, M.; De Sio, L. et al. Nanotechnology-assisted rna delivery: From nucleic acid therapeutics to COVID-19 vaccines. Small Methods 2021, 5, 2100402.

    CAS  Google Scholar 

  26. Krohn-Grimberghe, M.; Mitchell, M. J.; Schloss, M. J.; Khan, O. F.; Courties, G.; Guimaraes, P. P. G.; Rohde, D.; Cremer, S.; Kowalski, P. S.; Sun, Y. et al. Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nat. Biomed. Eng. 2020, 4, 1076–1089.

    CAS  Google Scholar 

  27. Kowalski, P. S.; Palmiero, U. C.; Huang, Y. X.; Rudra, A.; Langer, R.; Anderson, D. G. Ionizable amino-polyesters synthesized via ring opening polymerization of tertiary amino-alcohols for tissue selective mRNA delivery. Adv. Mater. 2018, 30, 1801151.

    Google Scholar 

  28. Kim, B. S.; Chuanoi, S.; Suma, T.; Anraku, Y.; Hayashi, K.; Naito, M.; Kim, H. J.; Kwon, I. C.; Miyata, K.; Kishimura, A. et al. Self-assembly of siRNA/PEG-b-catiomer at integer molar ratio into 100 nm-sized vesicular polyion complexes (siRNAsomes) for RNAi and codelivery of cargo macromolecules. J. Am. Chem. Soc. 2019, 141, 3699–3709.

    CAS  Google Scholar 

  29. Yoshinaga, N.; Ishii, T.; Naito, M.; Endo, T.; Uchida, S.; Cabral, H.; Osada, K.; Kataoka, K. Polyplex micelles with phenylboronate/gluconamide cross-linking in the core exerting promoted gene transfection through spatiotemporal responsivity to intracellular pH and ATP concentration. J. Am. Chem. Soc. 2017, 139, 18567–18575.

    CAS  Google Scholar 

  30. Tao, W.; Yurdagul, A.; Kong, N.; Li, W. L.; Wang, X. B.; Doran, A. C.; Feng, C.; Wang, J. Q.; Islam, M. A.; Farokhzad, O. C. et al. siRNA nanoparticles targeting CaMKIIyin lesional macrophages improve atherosclerotic plaque stability in mice. Sci. siRNA nanoparticles targeting CaMKIIyin lesional macrophages improve atherosclerotic plaque stability in mice. Sci. Transl. Med. 2020, 12, eaay1063.

    CAS  Google Scholar 

  31. Tai, W. Y.; Li, J. W.; Corey, E.; Gao, X. H. A ribonucleoprotein octamer for targeted siRNA delivery. Nat. Biomed. Eng. 2018, 2, 326–337.

    CAS  Google Scholar 

  32. Lopes, J.; Lopes, D.; Pereira-Silva, M.; Peixoto, D.; Veiga, F.; Hamblin, M. R.; Conde, J.; Corbo, C.; Zare, E. N.; Ashrafizadeh, M. et al. Macrophage cell membrane-cloaked nanoplatforms for biomedical applications. Small Methods 2022, 6, 2200289.

    CAS  Google Scholar 

  33. Hou, M. Y.; Wei, Y. S.; Zhao, Z. Y.; Han, W. Q.; Zhou, R. X.; Zhou, Y.; Zheng, Y. R.; Yin, L. C. Immuno-engineered nanodecoys for the multi-target anti-inflammatory treatment of autoimmune diseases. Adv. Mater. 2022, 34, 2108817.

    CAS  Google Scholar 

  34. Tang, J. N.; Su, T.; Huang, K.; Dinh, P. U.; Wang, Z. G.; Vandergriff, A.; Hensley, M. T.; Cores, J.; Allen, T.; Li, T. S. et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat. Biomed. Eng. 2018, 2, 17–26.

    CAS  Google Scholar 

  35. Wan, M. M.; Wang, Q.; Wang, R. L.; Wu, R.; Li, T.; Fang, D.; Huang, Y. Y.; Yu, Y. Q.; Fang, L. Y.; Wang, X. W. et al. Platelet-derived porous nanomotor for thrombus therapy. Sci. Adv. 2020, 6, eaaz9014.

    CAS  Google Scholar 

  36. Yan, J.; Liu, X.; Wu, F.; Ge, C. L.; Ye, H.; Chen, X. Y.; Wei, Y. S.; Zhou, R. X.; Duan, S. Z.; Zhu, R. Y. et al. Platelet pharmacytes for the hierarchical amplification of antitumor immunity in response to self-generated immune signals. Adv. Mater. 2022, 34, 2109517.

    CAS  Google Scholar 

  37. Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, 1706759.

    Google Scholar 

  38. Wang, S. Y.; Kai, M. X.; Duan, Y. O.; Zhou, Z. D.; Fang, R. H.; Gao, W. W.; Zhang, L. F. Membrane cholesterol depletion enhances enzymatic activity of cell-membrane-coated metal-organic-framework nanoparticles. Angew. Chem., Int. Edit. 2022, 61, e202203115.

    CAS  Google Scholar 

  39. Wang, Q. Q.; Wang, H. L.; Yan, H. G.; Tian, H. S.; Wang, Y. N.; Yu, W.; Dai, Z. Q.; Chen, P. F.; Liu, Z. M.; Tang, R. K. et al. Suppression of osteoclast multinucleation via a posttranscriptional regulation-based spatiotemporally selective delivery system. Sci. Adv. 2022, 8, eabn3333.

    CAS  Google Scholar 

  40. Liu, Y. J.; Zou, Y.; Feng, C.; Lee, A.; Yin, J. L.; Chung, R.; Park, J. B.; Rizos, H.; Tao, W.; Zheng, M. et al. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 2020, 20, 1637–1646.

    CAS  Google Scholar 

  41. Deng, Y. K.; Zhou, Y.; Liang, Q. J.; Ge, C. L.; Yang, J. D.; Shan, B. C.; Liu, Y.; Zhou, X. Z.; Yin, L. C. Inflammation-instructed hierarchical delivery of IL-4/miR-21 orchestrates osteoimmune microenvironment toward the treatment of rheumatoid arthritis. Adv. Funct. Mater. 2021, 31, 2101033.

    CAS  Google Scholar 

  42. Yan, J. H.; Wang, Y. N.; Song, X. Y.; Yan, X. F.; Zhao, Y.; Yu, L. M.; He, Z. Y. The advancement of gas-generating nanoplatforms in biomedical fields: Current frontiers and future perspectives. Small Methods 2022, 6, 2200139.

    Google Scholar 

  43. Ye, H.; Zhou, Y.; Liu, X.; Chen, Y. B.; Duan, S. Z.; Zhu, R. Y.; Liu, Y.; Yin, L. C. Recent advances on reactive oxygen species-responsive delivery and diagnosis system. Biomacromolecules 2019, 20, 2441–2463.

    CAS  Google Scholar 

  44. Feng, W.; Han, X. G.; Hu, H.; Chang, M. Q.; Ding, L.; **ang, H. J.; Chen, Y.; Li, Y. H. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases.. Nat. Commun. 2023, 12, 2203.

    Google Scholar 

  45. Zhou, Y.; Deng, Y. K.; Liu, Z. M.; Yin, M. Y.; Hou, M. Y.; Zhao, Z. Y.; Zhou, X. Z.; Yin, L. C. Cytokine-scavenging nanodecoys reconstruct osteoclast/osteoblast balance toward the treatment of postmenopausal osteoporosis. Sci. Adv. 2021, 7, eabl6432.

    CAS  Google Scholar 

  46. Nakanishi, H.; Miki, K.; Komatsu, K. R.; Umeda, M.; Mochizuki, M.; Inagaki, A.; Yoshida, Y.; Saito, H. Monitoring and visualizing microRNA dynamics during live cell differentiation using microRNA-responsive non-viral reporter vectors. Biomaterials 2017, 128, 121–135.

    CAS  Google Scholar 

  47. Han, C. S.; Yang, J. J.; Zhang, E.; Jiang, Y.; Qiao, A. J.; Du, Y. P.; Zhang, Q. K.; An, J. Q.; Sun, J. C.; Wang, M. M. et al. Metabolic labeling of cardiomyocyte-derived small extracellular-vesicle (sEV) miRNAs identifies miR-208a in cardiac regulation of lung gene expression. J. Extracell. Vesicles 2022, 11, 12246.

    CAS  Google Scholar 

  48. Sun, P. C.; Scharnweber, T.; Wadhwani, P.; Rabe, K. S.; Niemeyer, C. M. DNA-directed assembly of a cell-responsive biohybrid interface for cargo release.. Small Methods 2021, 5, 2001049.

    CAS  Google Scholar 

  49. Hou, M. Y.; Wu, X. J.; Zhao, Z. Y.; Deng, Q. R.; Chen, Y. B.; Yin, L. C. Endothelial cell-targeting, ROS-ultrasensitive drug/siRNA co-delivery nanocomplexes mitigate early-stage neutrophil recruitment for the anti-inflammatory treatment of myocardial ischemia reperfusion injury. ActaBiomater. 2022, 143, 344–355.

    CAS  Google Scholar 

  50. Kura, B.; Bacova, B. S.; Kalocayova, B.; Sykora, M.; Slezak, J. Oxidative stress-responsive MicroRNAs in heart injury. Int. J. Mol. Sci. 2020, 21, 358.

    CAS  Google Scholar 

  51. Moya, I. M.; Halder, G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 2019, 20, 211–226.

    CAS  Google Scholar 

  52. Sun, Y.; Zhang, P.; Li, Y. Q.; Hou, Y. J.; Yin, C. Y.; Wang, Z. K.; Liao, Z. Y.; Fu, X. Y.; Li, M.; Fan, C. D. et al. Light-activated gold-selenium core-shell nanocomposites with NIR-II photoacoustic imaging performances for heart targeted repair. ACS Nano 2022, 16, 18667–18681.

    CAS  Google Scholar 

  53. Frangogiannis, N. G. Regulation of the inflammatory response in cardiac repair. Circ. Res. 2012, 110, 159–173.

    CAS  Google Scholar 

  54. Wang, T. Y.; Sun, X. Y.; Guo, X.; Zhang, J. Q.; Yang, J.; Tao, S. X.; Guan, J.; Zhou, L.; Han, J.; Wang, C. Y. et al. Ultraefficiently calming cytokine storm using Ti3C2Tx MXene. Small Methods 2021, 5, 2001108.

    CAS  Google Scholar 

  55. Lindsey, M. L. Assigning matrix metalloproteinase roles in ischaemic cardiac remodelling. Nat. Rev. Cardiol. 2018, 15, 471–479.

    Google Scholar 

  56. Price, S.; Platz, E.; Cullen, L.; Tavazzi, G.; Christ, M.; Cowie, M. R.; Maisel, A. S.; Masip, J.; Miro, O.; McMurray, J. J. et al. Echocardiography and lung ultrasonography for the assessment and management of acute heart failure. Nat. Rev. Cardiol. 2017, 14, 427–440.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82172076, 52273144, and 52033006), 111 project, Collaborative Innovation Center of Suzhou Nano Science & Technology, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, and Suzhou Key Laboratory of Nanotechnology and Biomedicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhou, Lichen Yin or Yongbing Chen.

Electronic Supplementary Material

12274_2023_5810_MOESM1_ESM.pdf

MicroRNA-208a silencing against myocardial ischemia/reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Zhang, J., Yan, W. et al. MicroRNA-208a silencing against myocardial ischemia/reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes. Nano Res. 16, 11176–11185 (2023). https://doi.org/10.1007/s12274-023-5810-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5810-z

Keywords

Navigation