Log in

Insight into the influence of ether and ester electrolytes on the sodium-ion transportation kinetics for hard carbon

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The electrochemical performance of hard carbon (HC) materials is closely related to the electrolyte used in the sodium ion batteries (SIBs). Conventional electrolytes carbonate (EC) demonstrates low initial Columbic efficiency (ICE) and poor rate performance, which is one of the main bottlenecks that limits the practical application of HCs. Ether electrolyte (diglyme) was reported to improve the rate performance of HCs. Nevertheless, the underlying mechanism for the excellent rate capability is still lack of in-depth study. In this work, the differences of sodium-ion diffusion between ether and carbonate-base electrolytes in HCs are analyzed layer by layer. Firstly, when sodium-ions are diffused in electrolyte, the diffusion coefficient of sodium-ion in ether electrolyte is about 2.5 times higher than that in ester electrolytes by molecular dynamics (MD) simulation and experimental characterization. Furthermore, when the solvated sodium-ions are diffused into the solid electrolyte interphase (SEI) interface and the HCs material, the enhanced charge transfer kinetics (thin SEI layer (4.6 vs. 12 nm) and low RSEI (1.5 vs. 24 Ω)) at the SEI combined with low desolvation energy (0.248 eV) are responsible for high-rate performance and good cycling stability of HC in ether electrolyte. Therefore, high diffusion coefficient, low desolvation energy, and good interface are the intrinsic reasons for enhanced rate performance in ether electrolyte, which also has guiding significance for the design of other high-rate electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, T. Y.; Su, D. W.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. Electrode materials for sodium-ion batteries: Considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 2018, 1, 200–237.

    CAS  Google Scholar 

  2. Wang, X.; Roy, S.; Shi, Q. H.; Li, Y.; Zhao, Y. F.; Zhang, J. J. Progress in and application prospects of advanced and cost-effective iron (Fe)-based cathode materials for sodium-ion batteries. J. Mater. Chem. A 2021, 9, 1938–1969.

    CAS  Google Scholar 

  3. Li, Y.; Shi, Q. H.; Yin, X. P.; Wang, J.; Wang, J.; Zhao, Y. F.; Zhang, J. J. Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chem. Eng. J. 2020, 402, 126181.

    CAS  Google Scholar 

  4. Wang, X.; Yin, X. P.; Feng, X. C.; Li, Y.; Dong, X. P.; Shi, Q. H.; Zhao, Y. F.; Zhang, J. J. Rational design of Na0.67Ni0.2Co0.2Mn0.6O2 microsphere cathode material for stable and low temperature sodium ion storage. Chem. Eng. J. 2022, 428, 130990.

    CAS  Google Scholar 

  5. Yin, X. P.; Sarkar, S.; Shi, S. S.; Huang, Q. A.; Zhao, H. B.; Yan, L. M.; Zhao, Y. F.; Zhang, J. J. Recent progress in advanced organic electrode materials for sodium-ion batteries: Synthesis, mechanisms, challenges and perspectives. Adv. Funct. Mater. 2020, 30, 1908445.

    CAS  Google Scholar 

  6. Shen, L. Y.; Shi, S. S.; Roy, S.; Yin, X. P.; Liu, W. B.; Zhao, Y. F. Recent advances and optimization strategies on the electrolytes for hard carbon and p-based sodium-ion batteries. Adv. Funct. Mater. 2021, 31, 2006066.

    CAS  Google Scholar 

  7. Chen, D. Q.; Zhang, W.; Luo, K. Y.; Song, Y.; Zhong, Y. J.; Liu, Y. X.; Wang, G. K.; Zhong, B. H.; Wu, Z. G.; Guo, X. D. Hard carbon for sodium storage: Mechanism and optimization strategies toward commercialization. Energy Environ. Sci. 2021, 14, 2244–2262.

    CAS  Google Scholar 

  8. Bai, P. X.; He, Y. W.; Zou, X. X.; Zhao, X. X.; **ong, P. X.; Xu, Y. H. Elucidation of the sodium-storage mechanism in hard carbons. Adv. Energy Mater. 2018, 8, 1703217.

    Google Scholar 

  9. Huang, Y. X.; Zhao, L. Z.; Li, L.; **e, M.; Wu, F.; Chen, R. J. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application. Adv. Mater. 2019, 31, 1808393.

    Google Scholar 

  10. Wang, P.; Guo, Y. J.; Chen, W. P.; Duan, H.; Ye, H.; Yao, H. R.; Yin, Y. X.; Cao, F. F. Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries. Nano Res. 2023, 16, 3832–3838.

    CAS  Google Scholar 

  11. Yin, B.; Liang, S. Q.; Yu, D. D.; Cheng, B. S.; Egun, I. L.; Lin, J. D.; **e, X. F.; Shao, H. Z.; He, H. Y.; Pan, A. Q. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries. Adv. Mater. 2021, 33, 2100808.

    CAS  Google Scholar 

  12. Chen, X. Y.; Tian, J. Y.; Li, P.; Fang, Y. L.; Fang, Y. J.; Liang, X. M.; Feng, J. W.; Dong, J.; Ai, X. P.; Yang, H. Y.; Cao, Y. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism. Adv. Energy Mater. 2022, 12, 2200886.

    CAS  Google Scholar 

  13. Au, H.; Alptekin, H.; Jensen, A. C. S.; Olsson, E.; O’Keefe, C. A.; Smith, T.; Crespo-Ribadeneyra, M.; Headen, T. F.; Grey, C. P.; Cai, Q. et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 2020, 13, 3469–3479.

    CAS  Google Scholar 

  14. Sun, F.; Wang, H.; Qu, Z. B.; Wang, K. F.; Wang, L. J.; Gao, J. H.; Gao, J. M.; Liu, S. Q.; Lu, Y. F. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: Synergistic enhancement of adsorption and intercalation mechanisms. Adv. Energy Mater. 2021, 11, 2002981.

    CAS  Google Scholar 

  15. Song, M. H.; Song, Q.; Zhang, T.; Huo, X. M.; Lin, Z. Z.; Hu, Z. W.; Dong, L.; **, T.; Shen, C.; **e, K. Y. Growing curly graphene layer boosts hard carbon with superior sodium-ion storage. Nano Res., in press, https://doi.org/10.1007/s12274-023-5539-8.

  16. Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K. Y.; Park, M. S.; Yoon, W. S.; Kang, K. Sodium intercalation chemistry in graphite. Energy Environ. Sci. 2015, 8, 2963–2969.

    CAS  Google Scholar 

  17. He, Y. W.; Bai, P. X.; Gao, S. Y.; Xu, Y. H. Marriage of an ether-based electrolyte with hard carbon anodes creates superior sodium-ion batteries with high mass loading. ACS Appl. Mater. Interfaces 2018, 10, 41380–41388.

    CAS  Google Scholar 

  18. Gong, D. C.; Wei, C. Y.; Liang, Z. W.; Tang, Y. B. Recent advances on sodium-ion batteries and sodium dual-ion batteries: State-of-the-art Na+ host anode materials. Small Sci. 2021, 1, 2100014.

    CAS  Google Scholar 

  19. Li, K. K.; Zhang, J.; Lin, D. M.; Wang, D. W.; Li, B. H.; Lv, W.; Sun, S.; He, Y. B.; Kang, F. Y.; Yang, Q. H. et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 2019, 10, 725.

    CAS  Google Scholar 

  20. Zhang, J.; Han, J. W.; Yun, Q. B.; Li, Q.; Long, Y.; Ling, G. W.; Zhang, C.; Yang, Q. H. What is the right carbon for practical anode in alkali metal ion batteries. Small Sci. 2021, 1, 2000063.

    CAS  Google Scholar 

  21. Zhen, Y. C.; Sa, R. J.; Zhou, K. Q.; Ding, L. Y.; Chen, Y.; Mathur, S.; Hong, Z. S. Breaking the limitation of sodium-ion storage for nanostructured carbon anode by engineering desolvation barrier with neat electrolytes. Nano Energy 2020, 74, 104895.

    CAS  Google Scholar 

  22. Dong, R. Q.; Zheng, L. M.; Bai, Y.; Ni, Q.; Li, Y.; Wu, F.; Ren, H. X.; Wu, C. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 2021, 33, 2008810.

    CAS  Google Scholar 

  23. **a, J. L.; Yan, D.; Guo, L. P.; Dong, X. L.; Li, W. C.; Lu, A. H. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv. Mater. 2020, 32, 2000447.

    CAS  Google Scholar 

  24. Yin, X. P.; Zhao, Y. F.; Wang, X.; Feng, X. C.; Lu, Z. X.; Li, Y.; Long, H. L.; Wang, J.; Ning, J. Y.; Zhang, J. J. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage. Small 2022, 18, 2105568.

    CAS  Google Scholar 

  25. Yin, X. P.; Lu, Z. X.; Wang, J.; Feng, X. C.; Roy, S.; Liu, X. S.; Yang, Y.; Zhao, Y. F.; Zhang, J. J. Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 2022, 34, 2109282.

    CAS  Google Scholar 

  26. Dai, H. D.; Zeng, Z. Z.; Yang, X. P.; Jiang, M. J. H.; Wang, Y.; Huang, Q. H.; Liu, L. L.; Fu, L. J.; Zhang, P.; Wu, Y. P. Superior potassium storage behavior of hard carbon facilitated by ether-based electrolyte. Carbon 2021, 179, 60–67.

    CAS  Google Scholar 

  27. Seh, Z. W.; Sun, J.; Sun, Y. M.; Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 2015, 1, 449–455.

    CAS  Google Scholar 

  28. Ma, M. Y.; Cai, H. R.; Xu, C. L.; Huang, R. Z.; Wang, S. R.; Pan, H. L.; Hu, Y. S. Engineering solid electrolyte interface at nano-scale for high-performance hard carbon in sodium-ion batteries. Adv. Funct. Mater. 2021, 31, 2100278.

    CAS  Google Scholar 

  29. Pan, J.; Sun, Y. Y.; Yan, Y. H.; Feng, L.; Zhang, Y. F.; Lin, A. M.; Huang, F. Q.; Yang, J. Revisit electrolyte chemistry of hard carbon in ether for Na storage. JACS Au 2021, 1, 1208–1216.

    CAS  Google Scholar 

  30. Plimpton, S. Fast parallel algorithms for short-range molecular dynamic. J. Comp. Phys. 1995, 117, 1–19.

    CAS  Google Scholar 

  31. Doherty, B.; Zhong, X.; Gathiaka, S.; Li, B.; Acevedo, O. Revisiting OPLS force field parameters for ionic liquid simulations. J. Chem. Theory Comput. 2017, 13, 6131–6145.

    CAS  Google Scholar 

  32. Sambasivarao, S. V.; Acevedo, O. Development of OPLS-AA force field parameters for 68 unique ionic liquids. J. Chem. Theory Comput. 2009, 5, 1038–1050.

    CAS  Google Scholar 

  33. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

    Google Scholar 

  34. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.

    CAS  Google Scholar 

  35. Wang, Z. J.; Wang, Y. Y.; Li, B. H.; Bouwer, J. C.; Davey, K.; Lu, J.; Guo, Z. P. Non-flammable ester electrolyte with boosted stability against Li for high-performance Li metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202206682.

    CAS  Google Scholar 

  36. Wang, K. F.; Sun, F.; Wang, H.; Wu, D. Y.; Chao, Y. X.; Gao, J. H.; Zhao, G. B. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor. Adv. Funct. Mater. 2022, 32, 2203725.

    CAS  Google Scholar 

  37. Zhang, J.; Wang, D. W.; Lv, W.; Zhang, S. W.; Liang, Q. H.; Zheng, D. Q.; Kang, F. Y.; Yang, Q. H. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 2017, 10, 370–376.

    CAS  Google Scholar 

  38. Kang, M. L.; Wu, Y. Y.; Huang, X.; Zhou, K. Q.; Huang, Z. G.; Hong, Z. S. Engineering of a TiO2 anode toward a record high initial Coulombic efficiency enabling high-performance low-temperature Na-ion hybrid capacitors. J. Mater. Chem. A 2018, 6, 22840–22850.

    CAS  Google Scholar 

  39. Pan, K. H.; Lu, H. Y.; Zhong, F. P.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Understanding the electrochemical compatibility and reaction mechanism on Na metal and hard carbon anodes of PC-based electrolytes for sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 39651–39660.

    CAS  Google Scholar 

  40. Huang, J. Q.; Guo, X. Y.; Du, X. Q.; Lin, X. Y.; Huang, J. Q.; Tan, H.; Zhu, Y.; Zhang, B. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 2019, 12, 1550–1557.

    CAS  Google Scholar 

  41. Zhang, W. G.; Zeng, F. H.; Huang, H. J.; Yu, Y.; Xu, M. Q.; **ng, L. D.; Li, W. S. Enhanced interphasial stability of hard carbon for sodium-ion battery via film-forming electrolyte additive. Nano Res. 2023, 16, 3823–3831.

    CAS  Google Scholar 

  42. Wu, Z. R.; Zou, J.; Shabanian, S.; Golovin, K.; Liu, J. The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries. Chem. Eng. J. 2022, 427, 130972.

    CAS  Google Scholar 

  43. Lee, M. E.; Lee, S. M.; Choi, J.; Jang, D.; Lee, S.; **, H. J.; Yun, Y. S. Electrolyte-dependent sodium ion transport behaviors in hard carbon anode. Small 2020, 16, 2001053.

    CAS  Google Scholar 

  44. Gachot, G.; Grugeon, S.; Armand, M.; Pilard, S.; Guenot, P.; Tarascon, J. M.; Laruelle, S. Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J. Power Sources 2008, 178, 409–421.

    CAS  Google Scholar 

  45. Eshetu, G. G.; Diemant, T.; Hekmatfar, M.; Grugeon, S.; Behm, R. J.; Laruelle, S.; Armand, M.; Passerini, S. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. Nano Energy 2019, 55, 327–340.

    CAS  Google Scholar 

  46. Le, P. M. L.; Vo, T. D.; Pan, H. L.; **, Y.; He, Y.; Cao, X.; Nguyen, H. V.; Engelhard, M. H.; Wang, C. M.; **ao, J. et al. Excellent cycling stability of sodium anode enabled by a stable solid electrolyte interphase formed in ether-based electrolytes. Adv. Funct. Mater. 2020, 30, 2001151.

    CAS  Google Scholar 

  47. Li, K.; Galle Kankanamge, S. R.; Weldeghiorghis, T. K.; Jorn, R.; Kuroda, D. G.; Kumar, R. Predicting ion association in sodium electrolytes: A transferable model for investigating glymes. J. Phy. Chem. C 2018, 122, 4747–4756.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 22179077, 51774251, and 21908142), Shanghai Science and Technology Commission’s “2020 Science and Technology In-novation Action Plan” (No. 20511104003), and Natural Science Foundation in Shanghai (No. 21ZR1424200). The authors also thank Shiyanjia Lab (https://www.shiyanjia.com) for the XPS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Wang, Z., Liu, Y. et al. Insight into the influence of ether and ester electrolytes on the sodium-ion transportation kinetics for hard carbon. Nano Res. 16, 10922–10930 (2023). https://doi.org/10.1007/s12274-023-5793-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5793-9

Keywords

Navigation