Log in

Service behavior of triboelectric nanogenerators: Bridging the gap between prototypes and applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The triboelectric nanogenerators (TENGs), suppling power for freely mobile and distributed electronic equipment from Internet of Things, have been considered as “the energy for the new era”. Research on the service behavior has become increasingly important for achieving the reliability evaluation and life prediction of TENGs, as TENGs advance from prototypes to practical applications. Due to the wide selection of materials, the diversity of device structures, and the complexity of working environment, TENGs show unique characteristics in the service behavior. These dilemmas lead to the fact that systematical summary of service behavior for TENGs is still in its infancy. Here, the progresses of the service behavior for TENGs are comprehensively reviewed from the influence of environmental factors on the service performance of TENGs to the impact of TENGs during the service on their surroundings. We summed up the performance evolution of TENGs in the real environment and the reproducibility of TENGs of which the electrical output will be restored after failure. Then, the service adaptability of TENG is systematically discussed, including the biological and environmental compatibility. Finally, the challenges and opportunities that the related research faced are proposed to promote the emerging technology from laboratory to factory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.

    Article  CAS  Google Scholar 

  2. Tan, S.; Huang, T. Y.; Yavuz, I.; Wang, R.; Yoon, T. W.; Xu, M. J.; **ng, Q. Y.; Park, K.; Lee, D. K.; Chen, C. H. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 2022, 605, 268–273.

    Article  CAS  Google Scholar 

  3. Lheritier, P.; Torelló, A.; Usui, T.; Nouchokgwe, Y.; Aravindhan, A.; Li, J. N.; Prah, U.; Kovacova, V.; Bouton, O.; Hirose, S. et al. Large harvested energy with non-linear pyroelectric modules. Nature 2022, 609, 718–721.

    Article  CAS  Google Scholar 

  4. Zheng, N.; Xue, J. H.; Jie, Y.; Cao, X.; Wang, Z. L. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res. 2022, 15, 6213–6219.

    Article  CAS  Google Scholar 

  5. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  6. Ma, M. Y.; Kang, Z.; Liao, Q. L.; Zhang, Q.; Gao, F. F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.

    Article  CAS  Google Scholar 

  7. Zhu, P. C.; Zhang, B. S.; Wang, H. Y.; Wu, Y. H.; Cao, H. J.; He, L. B.; Li, C. Y.; Luo, X. P.; Li, X.; Mao, Y. C. 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. Nano Res. 2022, 15, 7460–7467.

    Article  Google Scholar 

  8. Prada, T.; Harnchana, V.; Lakhonchai, A.; Chingsungnoen, A.; Poolcharuansin, P.; Chanlek, N.; Klamchuen, A.; Thongbai, P.; Amornkitbamrung, V. Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications. Nano Res. 2022, 15, 272–279.

    Article  CAS  Google Scholar 

  9. Wu, H.; Wang, S.; Wang, Z. K.; Zi, Y. L. Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 2021, 12, 5470.

    Article  CAS  Google Scholar 

  10. Luo, J. J.; Wang, Z. L. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat 2020, 2, e12059.

    Article  CAS  Google Scholar 

  11. Wang, Z. M.; An, J.; Nie, J. H.; Luo, J. J.; Shao, J. J.; Jiang, T.; Chen, B. D.; Tang, W.; Wang, Z. L. A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicare. Adv. Mater. 2020, 32, e2001466.

    Article  Google Scholar 

  12. Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

    Article  CAS  Google Scholar 

  13. Zhao, X.; Kang, Z.; Liao, Q. L.; Zhang, Z.; Ma, M. Y.; Zhang, Q.; Zhang, Y. Ultralight, self-powered, and self-adaptive motion sensor based on triboelectric nanogenerator for perceptual layer application in Internet of things. Nano Energy 2018, 48, 312–319.

    Article  CAS  Google Scholar 

  14. Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

    Article  Google Scholar 

  15. Wang, Z. L. Toward self-powered sensor networks. Nano Today 2010, 5, 512–514.

    Article  Google Scholar 

  16. Cheng, G.; Zheng, H. W.; Yang, F.; Zhao, L.; Zheng, M. L.; Yang, J. J.; Qin, H. F.; Du, Z. L.; Wang, Z. L. Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip-electrode air-discharging and application for UV sensing. Nano Energy 2018, 44, 208–216.

    Article  CAS  Google Scholar 

  17. Zheng, M. L.; Yang, F.; Guo, J. M.; Zhao, L.; Jiang, X. H.; Gu, G. Q.; Zhang, B.; Cui, P.; Cheng, G.; Du, Z. L. Cd(OH)2@ZnO nanowires thin-film transistor and UV photodetector with a floating ionic gate tuned by a triboelectric nanogenerator. Nano Energy 2020, 73, 104808.

    Article  CAS  Google Scholar 

  18. Xu, L. X.; Zhang, Z.; Gao, F. F.; Zhao, X.; Xun, X. C.; Kang, Z.; Liao, Q. L.; Zhang, Y. Self-powered ultrasensitive pulse sensors for noninvasive multi-indicators cardiovascular monitoring. Nano Energy 2021, 81, 105614.

    Article  CAS  Google Scholar 

  19. Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

    Article  CAS  Google Scholar 

  20. Lin, S. Q.; Xu, L.; Chi Wang, A.; Wang, Z. L. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat. Commun. 2020, 11, 399.

    Article  CAS  Google Scholar 

  21. Zhao, X.; Zhang, Z.; Liao, Q. L.; Xun, X. C.; Gao, F. F.; Xu, L. X.; Kang, Z.; Zhang, Y. Self-powered user-interactive electronic skin for programmable touch operation platform. Sci. Adv. 2020, 6, eaba4294.

    Article  CAS  Google Scholar 

  22. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  CAS  Google Scholar 

  23. Li, X. J.; Jiang, C. M.; Ying, Y. B.; **, J. F. Biotriboelectric nanogenerators: Materials, structures, and applications. Adv. Energy Mater. 2020, 10, 2002001.

    Article  CAS  Google Scholar 

  24. Xu, W.; Wong, M. C.; Hao, J. H. Strategies and progress on improving robustness and reliability of triboelectric nanogenerators. Nano Energy 2019, 55, 203–215.

    Article  CAS  Google Scholar 

  25. Zhang, Q.; Liang, Q. J.; Liao, Q. L.; Yi, F.; Zheng, X.; Ma, M. Y.; Gao, F. F.; Zhang, Y. Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 2017, 29, 1606703.

    Article  Google Scholar 

  26. Lin, Z. H.; **e, Y. N.; Yang, Y.; Wang, S. H.; Zhu, G.; Wang, Z. L. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano 2013, 7, 4554–4560.

    Article  CAS  Google Scholar 

  27. Lee, J. W.; Jung, S.; Lee, T. W.; Jo, J.; Chae, H. Y.; Choi, K.; Kim, J. J.; Lee, J. H.; Yang, C.; Baik, J. M. High-output triboelectric nanogenerator based on dual inductive and resonance effects-controlled highly transparent polyimide for self-powered sensor network systems. Adv. Energy Mater. 2019, 9, 1901987.

    Article  Google Scholar 

  28. Cheon, S.; Kang, H.; Kim, H.; Son, Y.; Lee, J. Y.; Shin, H. J.; Kim, S. W.; Cho, J. H. High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers. Adv. Funct. Mater. 2018, 28, 1703778.

    Article  Google Scholar 

  29. Zhang, Y. Z.; Yang, Z. H.; Song, K. X.; Pang, X. J.; Shangguan, B. Triboelectric behaviors of materials under high speeds and large currents. Friction 2013, 1, 259–270.

    Article  Google Scholar 

  30. Lin, Z. H.; Cheng, G.; Li, X. H.; Yang, P. K.; Wen, X. N.; Lin Wang, Z. A multi-layered interdigitative-electrodes-based triboelectric nanogenerator for harvesting hydropower. Nano Energy 2015, 15, 256–265.

    Article  CAS  Google Scholar 

  31. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

    Article  CAS  Google Scholar 

  32. Chen, J.; Guo, H. Y.; Hu, C. G.; Wang, Z. L. Robust triboelectric nanogenerator achieved by centrifugal force induced automatic working mode transition. Adv. Energy Mater. 2020, 10, 2000886.

    Article  CAS  Google Scholar 

  33. Lin, Z. M.; Zhang, B. B.; Zou, H. Y.; Wu, Z. Y.; Guo, H. Y.; Zhang, Y.; Yang, J.; Wang, Z. L. Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability. Nano Energy 2020, 68, 104378.

    Article  CAS  Google Scholar 

  34. Liang, Q. J.; Zhanga, Z.; Yan, X. Q.; Gu, Y. S.; Zhao, Y. L.; Zhang, G. J.; Lu, S. N.; Liao, Q. L.; Zhang, Y. Functional triboelectric generator as self-powered vibration sensor with contact mode and non-contact mode. Nano Energy 2015, 14, 209–216.

    Article  CAS  Google Scholar 

  35. Wei, X. Y.; Kuang, S. Y.; Li, H. Y.; Pan, C. F.; Zhu, G.; Wang, Z. L. Interface-free area-scalable self-powered electroluminescent system driven by triboelectric generator. Sci. Rep. 2015, 5, 13658.

    Article  Google Scholar 

  36. Wang, S. H.; **e, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

    Article  CAS  Google Scholar 

  37. Li, X. Y.; Yin, X.; Zhao, Z. H.; Zhou, L. L.; Liu, D.; Zhang, C. L.; Zhang, C. G.; Zhang, W.; Li, S. X.; Wang, J. et al. Long-lifetime triboelectric nanogenerator operated in conjunction modes and low crest factor. Adv. Energy Mater. 2020, 10, 1903024.

    Article  CAS  Google Scholar 

  38. Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; **e, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.

    Article  CAS  Google Scholar 

  39. Guo, H. Y.; Chen, J.; Yeh, M. H.; Fan, X.; Wen, Z.; Li, Z. L.; Hu, C. G.; Wang, Z. L. An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 2015, 9, 5577–5584.

    Article  CAS  Google Scholar 

  40. Shang, W. Y.; Gu, G. Q.; Yang, F.; Zhao, L.; Cheng, G.; Du, Z. L.; Wang, Z. L. A sliding-mode triboelectric nanogenerator with chemical group grated structure by shadow mask reactive ion etching. ACS Nano 2017, 11, 8796–8803.

    Article  CAS  Google Scholar 

  41. Cui, P.; Wang, J. J.; **ong, J. Q.; Li, S. H.; Zhang, W. H.; Liu, X. L.; Gu, G. Q.; Guo, J. M.; Zhang, B.; Cheng, G. et al. Meter-scale fabrication of water-driven triboelectric nanogenerator based on in-situ grown layered double hydroxides through a bottom-up approach. Nano Energy 2020, 71, 104646.

    Article  CAS  Google Scholar 

  42. Kwak, S. S.; Kim, S. M.; Ryu, H.; Kim, J.; Khan, U.; Yoon, H. J.; Jeong, Y. H.; Kim, S. W. Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energy Environ. Sci. 2019, 12, 3156–3163.

    Article  CAS  Google Scholar 

  43. Lee, J. H.; Hinchet, R.; Kim, S. K.; Kim, S.; Kim, S. W. Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 2015, 8, 3605–3613.

    Article  CAS  Google Scholar 

  44. Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, e1706790.

    Article  Google Scholar 

  45. Xu, C.; Wang, A. C.; Zou, H. Y.; Zhang, B. B.; Zhang, C. L.; Zi, Y. L.; Pan, L.; Wang, P. H.; Feng, P. Z.; Lin, Z. Q. et al. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv. Mater. 2018, 30, e1803968.

    Article  Google Scholar 

  46. Lu, C. X.; Han, C. B.; Gu, G. Q.; Chen, J.; Yang, Z. W.; Jiang, T.; He, C.; Wang, Z. L. Temperature effect on performance of triboelectric nanogenerator. Adv. Eng. Mater. 2017, 19, 1700275.

    Article  Google Scholar 

  47. Wang, A. C.; Zhang, B. B.; Xu, C.; Zou, H. Y.; Lin, Z. Q.; Wang, Z. L. Unraveling temperature-dependent contact electrification between sliding-mode triboelectric pairs. Adv. Funct. Mater. 2020, 30, 1909384.

    Article  CAS  Google Scholar 

  48. Wen, X. N.; Su, Y. J.; Yang, Y.; Zhang, H. L.; Wang, Z. L. Applicability of triboelectric generator over a wide range of temperature. Nano Energy 2014, 4, 150–156.

    Article  CAS  Google Scholar 

  49. Chowdry, A.; Westgate, C. R. The role of bulk traps in metal-insulator contact charging. J. Phys. D Appl. Phys. 1974, 7, 713–725.

    Article  CAS  Google Scholar 

  50. Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; **e, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

    Article  CAS  Google Scholar 

  51. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

    Article  CAS  Google Scholar 

  52. Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576.

    Article  Google Scholar 

  53. Guo, H. Y.; Chen, J.; Tian, L.; Leng, Q.; **, Y.; Hu, C. G. Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 2014, 6, 17184–17189.

    Article  CAS  Google Scholar 

  54. Zhou, Q. T.; Lee, K.; Kim, K. N.; Park, J. G.; Pan, J.; Bae, J.; Baik, J. M.; Kim, T. High humidity- and contamination-resistant triboelectric nanogenerator with superhydrophobic interface. Nano Energy 2019, 57, 903–910.

    Article  CAS  Google Scholar 

  55. Li, L. Z.; Wang, X. L.; Zhu, P. Z.; Li, H. Q.; Wang, F.; Wu, J. The electron transfer mechanism between metal and amorphous polymers in humidity environment for triboelectric nanogenerator. Nano Energy 2020, 70, 104476.

    Article  CAS  Google Scholar 

  56. Jang, D.; Kim, Y.; Kim, T. Y.; Koh, K.; Jeong, U.; Cho, J. Force-assembled triboelectric nanogenerator with high-humidity-resistant electricity generation using hierarchical surface morphology. Nano Energy 2016, 20, 283–293.

    Article  CAS  Google Scholar 

  57. Chun, J.; Kim, J. W.; Jung, W. S.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 2015, 8, 3006–3012.

    Article  CAS  Google Scholar 

  58. Mule, A. R.; Dudem, B.; Graham, S. A.; Yu, J. S. Humidity sustained wearable pouch-type triboelectric nanogenerator for harvesting mechanical energy from human activities. Adv. Funct. Mater. 2019, 29, 1807779.

    Article  Google Scholar 

  59. Zhu, H. R.; Wang, N.; Xu, Y.; Chen, S. W.; Willander, M.; Cao, X.; Wang, Z. L. Triboelectric nanogenerators based on melamine and self-powered high-sensitive sensors for melamine detection. Adv. Funct. Mater. 2016, 26, 3029–3035.

    Article  CAS  Google Scholar 

  60. Uddin, A. S. M. I.; Yaqoob, U.; Chung, G. S. Improving the working efficiency of a triboelectric nanogenerator by the semimetallic PEDOT:PSS hole transport layer and its application in self-powered active acetylene gas sensing. ACS Appl. Mater. Interfaces 2016, 8, 30079–30089.

    Article  CAS  Google Scholar 

  61. Jiang, P.; Zhang, L.; Guo, H. Y.; Chen, C. Y.; Wu, C. S.; Zhang, S.; Wang, Z. L. Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dualsignal chemical sensing. Adv. Mater. 2019, 31, e1902793.

    Article  Google Scholar 

  62. Lin, S. Q.; Xu, L.; Tang, W.; Chen, X. Y.; Wang, Z. L. Electron transfer in nano-scale contact electrification: Atmosphere effect on the surface states of dielectrics. Nano Energy 2019, 65, 103956.

    Article  CAS  Google Scholar 

  63. Cui, S. W.; Zheng, Y. B.; Zhang, T. T.; Wang, D. A.; Zhou, F.; Liu, W. M. Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy 2018, 49, 31–39.

    Article  CAS  Google Scholar 

  64. Lin, Z. H.; Zhu, G.; Zhou, Y. S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z. L. A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem., Int. Ed. 2013, 52, 5065–5069.

    Article  CAS  Google Scholar 

  65. Li, Z. L.; Chen, J.; Yang, J.; Su, Y. J.; Fan, X.; Wu, Y.; Yu, C. W.; Wang, Z. L. β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 2015, 8, 887–896.

    Article  Google Scholar 

  66. Guan, Q. B.; Dai, Y. H.; Yang, Y. Q.; Bi, X. Y.; Wen, Z.; Pan, Y. Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy 2018, 51, 333–339.

    Article  CAS  Google Scholar 

  67. Dai, X. Y.; Huang, L. B.; Du, Y. Z.; Han, J. C.; Zheng, Q. Q.; Kong, J.; Hao, J. H. Self-healing, flexible, and tailorable triboelectric nanogenerators for self-powered sensors based on thermal effect of infrared radiation. Adv. Funct. Mater. 2020, 30, 1910723.

    Article  CAS  Google Scholar 

  68. Prateek; Thakur, V. K.; Gupta, R. K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260–4317.

    Article  CAS  Google Scholar 

  69. Lin, S. Q.; Xu, L.; Zhu, L. P.; Chen, X. Y.; Wang, Z. L. Electron transfer in nanoscale contact electrification: Photon excitation effect. Adv. Mater. 2019, 31, e1901418.

    Article  Google Scholar 

  70. Li, S. Y.; Fan, Y.; Chen, H. Q.; Nie, J. H.; Liang, Y. X.; Tao, X. L.; Zhang, J.; Chen, X. Y.; Fu, E. G.; Wang, Z. L. Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ. Sci. 2020, 13, 896–907.

    Article  CAS  Google Scholar 

  71. Hager, M. D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U. S. Self-healing materials. Adv. Mater. 2010, 22, 5424–5430.

    Article  CAS  Google Scholar 

  72. Parida, K.; **ong, J. Q.; Zhou, X. R.; Lee, P. S. Progress on triboelectric nanogenerator with stretchability, self-healability, and bio-compatibility. Nano Energy 2019, 59, 237–257.

    Article  CAS  Google Scholar 

  73. Deng, J. N.; Kuang, X.; Liu, R. Y.; Ding, W. B.; Wang, A. C.; Lai, Y. C.; Dong, K.; Wen, Z.; Wang, Y. X.; Wang, L. L. et al. Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. 2018, 30, e1705918.

    Article  Google Scholar 

  74. Park, J. H.; Park, K. J.; Jiang, T.; Sun, Q. J.; Huh, J. H.; Wang, Z. L.; Lee, S.; Cho, J. H. Light-transformable and -healable triboelectric nanogenerators. Nano Energy 2017, 38, 412–418.

    Article  CAS  Google Scholar 

  75. Lai, Y. C.; Wu, H. M.; Lin, H. C.; Chang, C. L.; Chou, H. H.; Hsiao, Y. C.; Wu, Y. C. Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 2019, 29, 1904626.

    Article  Google Scholar 

  76. Niu, H. D.; Du, X. Y.; Zhao, S. Y.; Yuan, Z. Q.; Zhang, X. L.; Cao, R.; Yin, Y. Y.; Zhang, C.; Zhou, T.; Li, C. J. Polymer nanocomposite-enabled high-performance triboelectric nanogenerator with self-healing capability. RSC Adv. 2018, 8, 30661–30668.

    Article  CAS  Google Scholar 

  77. Chen, Y. H.; Pu, X.; Liu, M. M.; Kuang, S. Y.; Zhang, P. P.; Hua, Q. L.; Cong, Z. F.; Guo, W. B.; Hu, W. G.; Wang, Z. L. Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification. ACS Nano 2019, 13, 8936–8945.

    Article  CAS  Google Scholar 

  78. Parida, K.; Kumar, V.; Jiangxin, W.; Bhavanasi, V.; Bendi, R.; Lee, P. S. Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater. 2017, 29, 1702181.

    Article  Google Scholar 

  79. Sun, J. M.; Pu, X.; Liu, M. M.; Yu, A. F.; Du, C. H.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 2018, 12, 6147–6155.

    Article  CAS  Google Scholar 

  80. White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797.

    Article  CAS  Google Scholar 

  81. Yang, Y.; Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 2013, 42, 7446–7467.

    Article  CAS  Google Scholar 

  82. Xu, W.; Huang, L. B.; Hao, J. H. Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode. Nano Energy 2017, 40, 399–407.

    Article  CAS  Google Scholar 

  83. Arisawa, M.; Yamaguchi, M. Rhodium-catalyzed disulfide exchange reaction. J. Am. Chem. Soc. 2003, 125, 6624–6625.

    Article  CAS  Google Scholar 

  84. Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980.

    Article  CAS  Google Scholar 

  85. Xun, X. C.; Zhang, Z.; Zhao, X.; Zhao, B.; Gao, F. F.; Kang, Z.; Liao, Q. L.; Zhang, Y. Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer. ACS Nano 2020, 14, 9066–9072.

    Article  CAS  Google Scholar 

  86. Martin, R.; Rekondo, A.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I. The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges. J. Mater. Chem. A 2014, 2, 5710.

    Article  CAS  Google Scholar 

  87. Rekondo, A.; Martin, R.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237–240.

    Article  CAS  Google Scholar 

  88. Shi, F.; Niu, J.; Liu, J.; Liu, F.; Wang, Z.; Feng, X. Q.; Zhang, X. Towards understanding why a superhydrophobic coating is needed by water striders. Adv. Mater. 2007, 19, 2257–2261.

    Article  CAS  Google Scholar 

  89. Jiang, L.; Zhao, Y.; Zhai, J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem., Int. Ed. 2004, 43, 4338–4341.

    Article  CAS  Google Scholar 

  90. Bhushan, B.; Her, E. K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 2010, 26, 8207–8217.

    Article  CAS  Google Scholar 

  91. Sun, M. H.; Luo, C. X.; Xu, L. P.; Ji, H.; Ouyang, Q.; Yu, D. P.; Chen, Y. Artificial lotus leaf by nanocasting. Langmuir 2005, 21, 8978–8981.

    Article  CAS  Google Scholar 

  92. Gao, X. F.; Jiang, L. Biophysics: Water-repellent legs of water striders. Nature 2004, 432, 36.

    Article  CAS  Google Scholar 

  93. Li, X. M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350–1368.

    Article  Google Scholar 

  94. Jeon, S. B.; Kim, D.; Yoon, G. W.; Yoon, J. B.; Choi, Y. K. Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight. Nano Energy 2015, 12, 636–645.

    Article  CAS  Google Scholar 

  95. Zhang, Q.; Liang, Q. J.; Liao, Q. L.; Ma, M. Y.; Gao, F. F.; Zhao, X.; Song, Y. D.; Song, L. J.; Xun, X. C.; Zhang, Y. An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system. Adv. Funct. Mater. 2018, 28, 1803117.

    Article  Google Scholar 

  96. Lee, Y.; Cha, S. H.; Kim, Y. W.; Choi, D.; Sun, J. Y. Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 2018, 9, 1804.

    Article  Google Scholar 

  97. Nie, S. X.; Guo, H. Y.; Lu, Y. X.; Zhuo, J. T.; Mo, J. L.; Wang, Z. L. Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Adv. Mater. Technol. 2020, 5, 2000454.

    Article  CAS  Google Scholar 

  98. Li, J.; Fu, J.; Cong, Y.; Wu, Y.; Xue, L. J.; Han, Y. C. Macroporous fluoropolymeric films templated by silica colloidal assembly: A possible route to super-hydrophobic surfaces. Appl. Surf. Sci. 2006, 252, 2229–2234.

    Article  CAS  Google Scholar 

  99. Kim, S. H.; Kim, J. H.; Kang, B. K.; Uhm, H. S. Superhydrophobic CFx coating via in-line atmospheric RF plasma of He-CF4-H2. Langmuir 2005, 21, 12213–12217.

    Article  CAS  Google Scholar 

  100. Zhang, G.; Wang, D. Y.; Gu, Z. Z.; Möhwald, H. Fabrication of superhydrophobic surfaces from binary colloidal assembly. Langmuir 2005, 21, 9143–9148.

    Article  CAS  Google Scholar 

  101. Soeno, T.; Inokuchi, K.; Shiratori, S. Ultra-water-repellent surface: Fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films. Appl. Surf. Sci. 2004, 237, 539–543.

    Article  Google Scholar 

  102. Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. S. Superhydrophobic perpendicular nanopin film by the bottom-up process. J. Am. Chem. Soc. 2005, 127, 13458–13459.

    Article  CAS  Google Scholar 

  103. Han, J. T.; Zheng, Y. L.; Cho, J. H.; Xu, X. R.; Cho, K. Stable superhydrophobic organic-inorganic hybrid films by electrostatic self-assembly. J. Phys. Chem. B 2005, 109, 20773–20778.

    Article  CAS  Google Scholar 

  104. Ming, W.; Wu, D.; van Benthem, R.; de With, G. Superhydrophobic films from raspberry-like particles. Nano Lett. 2005, 5, 2298–2301.

    Article  CAS  Google Scholar 

  105. Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994.

    Article  CAS  Google Scholar 

  106. Lee, W.; **, M. K.; Yoo, W. C.; Lee, J. K. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 2004, 20, 7665–7669.

    Article  CAS  Google Scholar 

  107. Lee, K. Y.; Chun, J.; Lee, J. H.; Kim, K. N.; Kang, N. R.; Kim, J. Y.; Kim, M. H.; Shin, K. S.; Gupta, M. K.; Baik, J. M. et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 2014, 26, 5037–5042.

    Article  CAS  Google Scholar 

  108. Parvez Mahmud, M. A.; Huda, N.; Farjana, S. H.; Asadnia, M.; Lang, C. Recent advances in nanogenerator-driven self-powered implantable biomedical devices. Adv. Energy Mater. 2018, 8, 1701210.

    Article  Google Scholar 

  109. Zheng, Q.; Tang, Q. Z.; Wang, Z. L.; Li, Z. Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 2021, 18, 7–21.

    Article  Google Scholar 

  110. Liu, Z. R.; Nie, J. H.; Miao, B.; Li, J. D.; Cui, Y. B.; Wang, S.; Zhang, X. D.; Zhao, G. R.; Deng, Y. B.; Wu, Y. H. et al. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv. Mater. 2019, 31, e1807795.

    Article  Google Scholar 

  111. Zheng, Q.; Zhang, H.; Shi, B. J.; Xue, X.; Liu, Z.; **, Y. M.; Ma, Y.; Zou, Y.; Wang, X. X.; An, Z. et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 2016, 10, 6510–6518.

    Article  CAS  Google Scholar 

  112. Zheng, Q.; Shi, B. J.; Fan, F. R.; Wang, X. X.; Yan, L.; Yuan, W. W.; Wang, S. H.; Liu, H.; Li, Z.; Wang, Z. L. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 2014, 26, 5851–5856.

    Article  CAS  Google Scholar 

  113. Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B. J.; Li, N.; Jiang, D. J.; **e, F.; Qu, D.; Zou, Y.; Huang, Y. et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Funct. Mater. 2019, 29, 1807560.

    Article  Google Scholar 

  114. Li, J.; Kang, L.; Long, Y.; Wei, H.; Yu, Y. H.; Wang, Y. Z.; Ferreira, C. A.; Yao, G.; Zhang, Z. Y.; Carlos, C. et al. Implanted battery-free direct-current micro-power supply from in vivo breath energy harvesting. ACS Appl. Mater. Interfaces 2018, 10, 42030–42038.

    Article  CAS  Google Scholar 

  115. Jiang, D. J.; Shi, B. J.; Ouyang, H.; Fan, Y. B.; Wang, Z. L.; Li, Z. Emerging implantable energy harvesters and self-powered implantable medical electronics. ACS Nano 2020, 14, 6436–6448.

    Article  CAS  Google Scholar 

  116. Ouyang, H.; Tian, J. J.; Sun, G. L.; Zou, Y.; Liu, Z.; Li, H.; Zhao, L. M.; Shi, B. J.; Fan, Y. B.; Fan, Y. F. et al. Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 2017, 29, 1703456.

    Article  Google Scholar 

  117. Ma, Y.; Zheng, Q.; Liu, Y.; Shi, B. J.; Xue, X.; Ji, W. P.; Liu, Z.; **, Y. M.; Zou, Y.; An, Z. et al. Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett. 2016, 16, 6042–6051.

    Article  CAS  Google Scholar 

  118. Wu, C. S.; Jiang, P.; Li, W.; Guo, H. Y.; Wang, J.; Chen, J.; Prausnitz, M. R.; Wang, Z. L. Self-powered iontophoretic transdermal drug delivery system driven and regulated by biomechanical motions. Adv. Funct. Mater. 2020, 30, 1907378.

    Article  CAS  Google Scholar 

  119. Tang, W.; Tian, J. J.; Zheng, Q.; Yan, L.; Wang, J. X.; Li, Z.; Wang, Z. L. Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation. ACS Nano 2015, 9, 7867–7873.

    Article  CAS  Google Scholar 

  120. Zhao, C. C.; Feng, H. Q.; Zhang, L. J.; Li, Z.; Zou, Y.; Tan, P. C.; Ouyang, H.; Jiang, D. J.; Yu, M.; Wang, C. et al. Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Adv. Funct. Mater. 2019, 29, 1808640.

    Article  CAS  Google Scholar 

  121. Han, O. Y.; Liu, Z.; Li, N.; Shi, B. J.; Zou, Y.; **e, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q. et al. Symbiotic cardiac pacemaker. Nat. Commun. 2019, 10, 1821.

    Article  Google Scholar 

  122. Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H. Y.; Song, J. K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S. et al. A physically transient form of silicon electronics. Science 2012, 337, 1640–1644.

    Article  CAS  Google Scholar 

  123. Pan, R. Z.; Xuan, W. P.; Chen, J. K.; Dong, S. R.; **, H.; Wang, X. Z.; Li, H. L.; Luo, J. K. Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 2018, 45, 193–202.

    Article  CAS  Google Scholar 

  124. Li, Z.; Feng, H. Q.; Zheng, Q.; Li, H.; Zhao, C. C.; Ouyang, H.; Noreen, S.; Yu, M.; Su, F.; Liu, R. P. et al. Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing. Nano Energy 2018, 54, 390–399.

    Article  CAS  Google Scholar 

  125. Kim, K. N.; Chun, J.; Chae, S. A.; Ahn, C. W.; Kim, I. W.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy 2015, 14, 87–94.

    Article  CAS  Google Scholar 

  126. Hwang, S. W.; Lee, C. H.; Cheng, H. Y.; Jeong, J. W.; Kang, S. K.; Kim, J. H.; Shin, J.; Yang, J.; Liu, Z. J.; Ameer, G. A. et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 2015, 15, 2801–2808.

    Article  CAS  Google Scholar 

  127. Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905–3911.

    Article  CAS  Google Scholar 

  128. Hannan, M. A.; Mutashar, S.; Samad, S. A.; Hussain, A. Energy harvesting for the implantable biomedical devices: Issues and challenges. BioMed. Eng. OnLine 2014, 13, 79.

    Article  Google Scholar 

  129. Li, Z.; Li, C.; Deng, Y. L. Bioresorbable pressure sensor and its applications in abnormal respiratory event identification. ACS Appl. Electron. Mater. 2023, 5, 1761–1769.

    Article  CAS  Google Scholar 

  130. Jiang, W.; Li, H.; Liu, Z.; Li, Z.; Tian, J. J.; Shi, B. J.; Zou, Y.; Ouyang, H.; Zhao, C. C.; Zhao, L. M. et al. Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv. Mater. 2018, 30, e1801895.

    Article  Google Scholar 

  131. Wang, R. X.; Gao, S. J.; Yang, Z.; Li, Y. L.; Chen, W. N.; Wu, B. X.; Wu, W. Z. Engineered and laser-processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation. Adv. Mater. 2018, 30, 1706267.

    Article  Google Scholar 

  132. Yao, C. H.; Yin, X.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 2017, 27, 1700794.

    Article  Google Scholar 

  133. Yao, C. H.; Hernandez, A.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 2016, 30, 103–108.

    Article  CAS  Google Scholar 

  134. Haward, M. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nat. Commun. 2018, 9, 667.

    Article  Google Scholar 

  135. Fu, K. K.; Wang, Z. Y.; Dai, J. Q.; Carter, M.; Hu, L. B. Transient electronics: Materials and devices. Chem. Mater. 2016, 28, 3527–3539.

    Article  CAS  Google Scholar 

  136. Xun, X. C.; Zhao, X.; Li, Q.; Zhao, B.; Ouyang, T.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Zhang, Y. Tough and degradable self-healing elastomer from synergistic soft-hard segments design for biomechano-robust artificial skin. ACS Nano 2021, 15, 20656–20665.

    Article  CAS  Google Scholar 

  137. Liu, G. L.; Guo, H. Y.; Xu, S. X.; Hu, C. G.; Wang, Z. L. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 2019, 9, 1900801.

    Article  Google Scholar 

  138. Chen, G. Y.; Xu, L.; Zhang, P. P.; Chen, B. D.; Wang, G. X.; Ji, J. H.; Pu, X.; Wang, Z. L. Seawater degradable triboelectric nanogenerators for blue energy. Adv. Mater. Technol. 2020, 5, 2000455.

    Article  CAS  Google Scholar 

  139. Liang, Q. J.; Zhang, Q.; Yan, X. Q.; Liao, X. Q.; Han, L. H.; Yi, F.; Ma, M. Y.; Zhang, Y. Recyclable and green triboelectric nanogenerator. Adv. Mater. 2017, 29, 1604961.

    Article  Google Scholar 

  140. Lu, Y. C.; Li, X. J.; **, J. F.; He, J. S.; Wu, J. A flexible, recyclable, and high-performance pullulan-based triboelectric nanogenerator (TENG). Adv. Mater. Technol. 2020, 5, 1900905.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFA0703500), the National Natural Science Foundation of China (Nos. 52232006, 52188101, 52102153, 52072029, 51991340, and 51991342), the Overseas Expertise Introduction Projects for Discipline Innovation (No. B14003), the China Postdoctoral Science Foundation (No. 2021M700379), and the Fundamental Research Funds for Central Universities (No. FRF-TP-18-001C1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan Zhao or Qingliang Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Xun, X., Zhao, X. et al. Service behavior of triboelectric nanogenerators: Bridging the gap between prototypes and applications. Nano Res. 16, 11731–11752 (2023). https://doi.org/10.1007/s12274-023-5728-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5728-5

Keywords

Navigation