Log in

A flexible solid polymer electrolyte enabled with lithiated zeolite for high performance lithium battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solid-state lithium batteries using composite polymer electrolytes (CPEs) have attracted much attention owing to their higher safety compared to liquid electrolytes and flexibility compared to ceramic electrolytes. However, their unsatisfactory lithium-ion conductivity still limits their development. Herein, a high ion conductive CPE with multiple continuous lithium pathways is designed. This new electrolyte consists of poly(vinylidene fluorideco-hexafluoropropylene) (PVDF-HFP) and lithiated X type zeolite (Li-X), which possesses a high ionic conductivity (1.98 × 10−4 S/cm), high lithium transference number \((t_{\text{Li}^{+}}=0.55)\), wide electrochemical window (4.7 V), and excellent stability against the lithium anode. Density functional theory (DFT) calculation confirms that the Lewis acid sites in zeolite can graft with N,N-dimethylformamide (DMF) and PVDF-HFP chains, resulting in decreased crystallinity of polymer and providing rapid Li+ transmission channels. When used in a full cell, the solid Li∣Li-X-3%∣LiFePO4 cell displays excellent cycling stability and rate performance at room temperature and 60 °C. Furthermore, pouch cells with the Li-X-3% electrolyte exhibit brilliant safety under extreme conditions, such as folding and cutting. Thus, this proposed zeolite-PVDF-HFP CPE represents a promising potential in the application of making a safer, higher performing, and flexible solid-state lithium battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X.; Huang, H. J.; Pan, L.; Liu, T.; Niederberger, M. Fully integrated design of a stretchable solid-state lithium-ion full battery. Adv. Mater. 2019, 31, 1904648.

    CAS  Google Scholar 

  2. Mathies, L.; Diddens, D.; Dong, D. P.; Bedrov, D.; Leipner, H. Transport mechanism of lithium ions in non-coordinating P(VdF-HFP) copolymer matrix. Solid State Ionics 2020, 357, 115497.

    CAS  Google Scholar 

  3. Cheng, J.; Hou, G. M.; Chen, Q.; Li, D. P.; Li, K. K.; Yuan, Q. H.; Wang, J. J.; Ci, L. J. Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chem. Eng. J. 2022, 429, 132343.

    CAS  Google Scholar 

  4. Ke, R. H.; Du, L. L.; Han, B.; Xu, H. L.; Meng, H.; Zeng, H. B.; Zheng, Z. J.; Deng, Y. H. Biobased self-growing approach toward tailored, integrated high-performance flexible lithium-ion battery. Nano Lett. 2022, 22, 9327–9334.

    CAS  Google Scholar 

  5. Lian, P. J.; Zhao, B. S.; Zhang, L. Q.; Xu, N.; Wu, M. T.; Gao, X. P. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J. Mater. Chem. A 2019, 7, 20540–20557.

    CAS  Google Scholar 

  6. Guan, D. H.; Wang, X. X.; Li, F.; Zheng, L. J.; Li, M. L.; Wang, H. F.; Xu, J. J. All-solid-state photo-assisted Li-CO2 battery working at an ultra-wide operation temperature. ACS Nano 2022, 16, 12364–12376.

    CAS  Google Scholar 

  7. MacGlashan, G. S.; Andreev, Y. G.; Bruce, P. G. Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6. Nature 1999, 398, 792–794.

    CAS  Google Scholar 

  8. Chan, C. H.; Kammer, H. W.; Sim, L. H.; Yusoff, S. N. H. M.; Hashifudin, A.; Winie, T. Conductivity and dielectric relaxation of Li salt in poly(ethylene oxide) and epoxidized natural rubber polymer electrolytes. Ionics 2014, 20, 189–199.

    CAS  Google Scholar 

  9. Li, C.; Guo, Z. Y.; Yang, B. C.; Liu, Y.; Wang, Y. G.; **a, Y. Y. A rechargeable Li-CO2 battery with a gel polymer electrolyte. Angew. Chem., Int. Ed. 2017, 56, 9126–9130.

    CAS  Google Scholar 

  10. Cheng, Z. W.; Liu, T.; Zhao, B.; Shen, F.; **, H. Y.; Han, X. G. Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 2021, 34, 388–416.

    Google Scholar 

  11. Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 2020, 7, 1903088.

    CAS  Google Scholar 

  12. Kong, X.; Rudnicki, P. E.; Choudhury, S.; Bao, Z. N.; Qin, J. Dendrite suppression by a polymer coating: A coarse-grained molecular study. Adv. Funct. Mater. 2020, 30, 1910138.

    CAS  Google Scholar 

  13. Elashmawi, I. S.; Gaabour, L. H. Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 2015, 5, 105–110.

    Google Scholar 

  14. Du, C. H.; Zhu, B. K.; Xu, Y. Y. The effects of quenching on the phase structure of vinylidene fluoride segments in PVDF-HFP copolymer and PVDF-HFP/PMMA blends. J. Mater. Sci. 2006, 41, 417–421.

    CAS  Google Scholar 

  15. Ye, F.; Liao, K. M.; Ran, R.; Shao, Z. P. Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: A review. Energy Fuels 2020, 34, 9189–9207.

    CAS  Google Scholar 

  16. Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.

    CAS  Google Scholar 

  17. Wang, Z. X.; Huang, X. J.; Chen, L. Q. Understanding of effects of nano-Al2O3 particles on ionic conductivity of composite polymer electrolytes. Electrochem. Solid-State Lett. 2003, 6, E40.

    CAS  Google Scholar 

  18. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458.

    CAS  Google Scholar 

  19. Jayathilaka, P. A. R. D.; Dissanayake, M. A. K. L.; Albinsson, I.; Mellander, B. E. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system. Electrochim. Acta 2002, 47, 3257–3268.

    CAS  Google Scholar 

  20. Chan, C. K.; Yang, T.; Weller, J. M. Nanostructured garnet-type Li7La3Zr2O12: Synthesis, properties, and opportunities as electrolytes for Li-ion batteries. Electrochim. Acta 2017, 253, 268–280.

    CAS  Google Scholar 

  21. Xu, D.; Su, J. M.; **, J.; Sun, C.; Ruan, Y. D.; Chen, C. H.; Wen, Z. Y. In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 as initiator and ion-conductive filler. Adv. Energy Mater. 2019, 9, 1900611.

    Google Scholar 

  22. Huang, Z. Y.; Chen, L. H.; Huang, B.; Xu, B. Y.; Shao, G.; Wang, H. L.; Li, Y. T.; Wang, C. A. Enhanced performance of Li6.4La3Zr1.4Ta0.6O12 solid electrolyte by the regulation of grain and grain boundary phases. ACS Appl. Mater. Interfaces 2020, 12, 56118–56125.

    CAS  Google Scholar 

  23. Mo, Y. F.; Ong, S. P.; Ceder, G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 2012, 24, 15–17.

    CAS  Google Scholar 

  24. Suzuki, K.; Kato, D.; Hara, K.; Yano, T. A.; Hirayama, M.; Hara, M.; Kanno, R. Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium-sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte. Electrochim. Acta 2017, 258, 110–115.

    CAS  Google Scholar 

  25. Zhang, Z.; Huang, Y.; Gao, H.; Li, C.; Hang, J. X.; Liu, P. B. MOF-derived multifunctional filler reinforced polymer electrolyte for solidstate lithium batteries. J. Energy Chem. 2021, 60, 259–271.

    CAS  Google Scholar 

  26. Zhang, G.; Hong, Y. L.; Nishiyama, Y.; Bai, S. Y.; Kitagawa, S.; Horike, S. Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J. Am. Chem. Soc. 2019, 141, 1227–1234.

    CAS  Google Scholar 

  27. Barbosa, J. C.; Gonçalves, R.; Costa, C. M.; de Zea Bermudez, V.; Fidalgo-Marijuan, A.; Zhang, Q.; Lanceros-Méndez, S. Metal-organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Mater. Adv. 2021, 2, 3790–3805.

    CAS  Google Scholar 

  28. Wang, X. X.; Chi, X. W.; Li, M. L.; Guan, D. H.; Miao, C. L.; Xu, J. J. Metal-organic frameworks derived electrolytes build multiple wetting interfaces for integrated solid-state lithium-oxygen battery. Adv. Funct. Mater. 2022, 32, 2113235.

    CAS  Google Scholar 

  29. Wang, X. X.; Chi, X. W.; Li, M. L.; Guan, D. H.; Miao, C. L.; Xu, J. J. An integrated solid-state lithium-oxygen battery with highly stable anionic covalent organic frameworks electrolyte. Chem 2023, 9, 394–410.

    Google Scholar 

  30. Li, Z. G.; Wu, X. H.; Yu, X. Y.; Zhou, S. Y.; Qiao, Y.; Zhou, H. S.; Sun, S. G. Long-life aqueous Zn-I2 battery enabled by a low-cost multifunctional zeolite membrane separator. Nano Lett. 2022, 22, 2538–2546.

    CAS  Google Scholar 

  31. Chi, X. W.; Li, M. L.; Di, J. C.; Bai, P.; Song, L. N.; Wang, X. X.; Li, F.; Liang, S.; Xu, J. J.; Yu, J. H. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 2021, 592, 551–557.

    CAS  Google Scholar 

  32. Cui, Y. H.; Zhao, Q. H.; Wu, X. J.; Chen, X.; Yang, J. L.; Wang, Y. T.; Qin, R. Z.; Ding, S. X.; Song, Y. L.; Wu, J. W. et al. An interface-bridged organic—inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem., Int. Ed. 2020, 59, 16594–16601.

    CAS  Google Scholar 

  33. Zheng, L. J.; Bai, P.; Yan, W. F.; Li, F.; Wang, X. X.; Xu, J. J. In situ construction of glass-fiber-directed zeolite microtube woven separator for ultra-high-capacity lithium-oxygen batteries. Matter 2023, 6, 142–157.

    CAS  Google Scholar 

  34. Huang, Y. F.; Gu, T.; Rui, G. C.; Shi, P. R.; Fu, W. B.; Chen, L.; Liu, X. T.; Zeng, J. P.; Kang, B. H.; Yan, Z. C. et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 2021, 14, 6021–6029.

    CAS  Google Scholar 

  35. Mi, J. S.; Ma, J. B.; Chen, L. K.; Lai, C.; Yang, K.; Biao, J.; **a, H. Y.; Song, X.; Lv, W.; Zhong, G. M. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling highvoltage lithium metal solid-state batteries. Energy Storage Mater. 2022, 48, 375–383.

    Google Scholar 

  36. Liu, Q. Y.; Yang, G. J.; Li, X. Y.; Zhang, S. M.; Chen, R. J.; Wang, X. F.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer. Energy Storage Mater. 2022, 51, 443–452.

    Google Scholar 

  37. Zhang, X.; Han, J.; Niu, X. F.; **n, C. Z.; Xue, C. J.; Wang, S.; Shen, Y.; Zhang, L.; Li, L. L.; Nan, C. W. High cycling stability for solid-state Li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batter. Supercaps 2020, 3, 876–883.

    CAS  Google Scholar 

  38. Lang, J. L.; Long, Y. Z.; Qu, J. L.; Luo, X. Y.; Wei, H. H.; Huang, K.; Zhang, H. T.; Qi, L. H.; Zhang, Q. F.; Li, Z. C. One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater. 2019, 16, 85–90.

    Google Scholar 

  39. Ding, Z. Y.; Tang, Q. M.; Liu, Y. C.; Yao, P. H.; Liu, C.; Liu, X. J.; Wu, J. W.; Lavorgna, M. Integrate multifunctional ionic sieve lithiated X zeolite-ionic liquid electrolyte for solid-state lithium metal batteries with ultralong lifespan. Chem. Eng. J. 2022, 433, 133522.

    CAS  Google Scholar 

  40. **, Z. N.; Lei, D.; Wang, Y.; Wu, L. K.; Hu, N. Influences of poling temperature and elongation ratio on PVDF-HFP piezoelectric films. Nanotechnol. Rev. 2021, 10, 1009–1017.

    CAS  Google Scholar 

  41. Tian, X. Z.; Jiang, X. Poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) membranes for ethyl acetate removal from water. J. Hazard. Mater. 2008, 153, 128–135.

    CAS  Google Scholar 

  42. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  43. Wu, L. K.; Yuan, W. F.; Hu, N.; Wang, Z. C.; Chen, C. L.; Qiu, J. H.; Ying, J.; Li, Y. Improved piezoelectricity of PVDF-HFP/carbon black composite films. J. Phys. D: Appl. Phys. 2014, 47, 135302.

    Google Scholar 

  44. Lee, J. Y.; Chung, P. H.; Yeh, S. C.; Yu, T. Y.; Lee, W. Y.; Wu, N. L.; Jeng, R. J. Tough polymer electrolyte with an intrinsically stabilized interface with Li metal for all-solid-state lithium-ion batteries. J. Phys. Chem. C 2021, 125, 26339–26347.

    CAS  Google Scholar 

  45. Mishra, R.; Singh, S. K.; Gupta, H.; Tiwari, R. K.; Meghnani, D.; Patel, A.; Tiwari, A.; Tiwari, V. K.; Singh, R. K. Polar β-phase PVdF-HFP-based freestanding and flexible gel polymer electrolyte for better cycling stability in a Na battery. Energy Fuels 2021, 35, 15153–15165.

    CAS  Google Scholar 

  46. Tohluebaji, N.; Putson, C.; Muensit, N. High electromechanical deformation based on structural beta-phase content and electrostrictive properties of electrospun poly(vinylidene fluoride-hexafluoropropylene) nanofibers. Polymers (Basel) 2019, 11, 1817.

    CAS  Google Scholar 

  47. Yao, P. C.; Zhu, B.; Zhai, H. W.; Liao, X. B.; Zhu, Y. X.; Xu, W. H.; Cheng, Q.; Jayyosi, C.; Li, Z.; Zhu, J. et al. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett. 2018, 18, 6113–6120.

    CAS  Google Scholar 

  48. Yang, K.; Chen, L. K.; Ma, J. B.; Lai, C.; Huang, Y. F.; Mi, J. S.; Biao, J.; Zhang, D. F.; Shi, P. R.; **a, H. X. et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 24668–24675.

    CAS  Google Scholar 

  49. Liu, L.; Zhang, D. C.; Zhao, J. W.; Shen, J. D.; Li, F. K.; Yang, Y.; Liu, Z. B.; He, W. X.; Zhao, W. M.; Liu, J. Synergistic effect of lithium salts with fillers and solvents in composite electrolytes for superior room-temperature solid-state lithium batteries. ACS Appl. Energy Mater. 2022, 5, 2484–2494.

    CAS  Google Scholar 

  50. Gonçalves, R.; Miranda, D.; Almeida, A. M.; Silva, M. M.; Meseguer-Dueñas, J. M.; Ribelles, J. L. G.; Lanceros-Méndez, S.; Costa, C. M. Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride-co-hexafluoropropylene) for safer rechargeable lithium-ion batteries. Sustain. Mater. Technol. 2019, 21, e00104.

    Google Scholar 

  51. Fujii, K.; Wakamatsu, H.; Todorov, Y.; Yoshimoto, N.; Morita, M. Structural and electrochemical properties of Li ion solvation complexes in the salt-concentrated electrolytes using an aprotic donor solvent, N,N-dimethylformamide. J. Phys. Chem. C 2016, 120, 17196–17204.

    CAS  Google Scholar 

  52. Xu, F. L.; Deng, S. G.; Guo, Q. Y.; Zhou, D.; Yao, X. Y. Quasi-ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2∣ ∣Li batteries with rigid-flexible coupling interphase. Small Methods 2021, 5, 2100262.

    CAS  Google Scholar 

  53. Jacob, M.; Arof, A. K. FTIR studies of DMF plasticized polyvinyledene fluoride based polymer electrolytes. Electrochim. Acta 2000, 45, 1701–1706.

    CAS  Google Scholar 

  54. Rey, I.; Johansson, P.; Lindgren, J.; Lassègues, J. C.; Grondin, J.; Servant, L. Spectroscopic and theoretical study of (CF3SO2)2N(TFSI) and (CF3SO2)2NH(HTFSI). J. Phys. Chem. A 1998, 102, 3249–3258.

    CAS  Google Scholar 

  55. Li, Z. X.; Zhang, S. Z.; Jiang, Z.; Cai, D.; Gu, C. D.; Tu, J. P. Deep eutectic solvent-immobilized PVDF-HFP eutectogel as solid electrolyte for safe lithium metal battery. Mater. Chem. Phys. 2021, 267, 124701.

    CAS  Google Scholar 

  56. Aravindan, V.; Vickraman, P. Characterization of SiO2 and Al2O3 incorporated PVdF-HFP based composite polymer electrolytes with LiPF3(CF3CF2)3. J. Appl. Polym. Sci. 2008, 108, 1314–1322.

    CAS  Google Scholar 

  57. Zuo, X. X.; Ma, X. D.; Wu, J. H.; Deng, X.; **ao, X.; Liu, J. S.; Nan, J. M. Self-supporting ethyl cellulose/poly(vinylidene fluoride) blended gel polymer electrolyte for 5 V high-voltage lithium-ion batteries. Electrochim. Acta 2018, 271, 582–590.

    CAS  Google Scholar 

  58. Wang, W.; Yuan, Y.; Wang, J. L.; Zhang, Y.; Liao, C.; Mu, X. W.; Sheng, H. B.; Kan, Y. C.; Song, L.; Hu, Y. Enhanced electrochemical and safety performance of lithium metal batteries enabled by the atom layer deposition on PVDF-HFP separator. ACS Appl. Energy Mater. 2019, 2, 4167–4174.

    CAS  Google Scholar 

  59. Poole, J. L.; Riding, K. A.; Folliard, K. J.; Juenger, M. C. G.; Schindler, A. K. Methods for calculating activation energy for Portland cement. ACI Mater. J. 2007, 104, 303–311.

    Google Scholar 

  60. Sun, Z. J.; Liu, L.; Yang, B.; Li, Q. R.; Wu, B.; Zhao, J. T.; Ma, L.; Liu, Y.; An, H. L. Preparation and ion conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte films using radio frequency sputtering. Solid State Ionics 2020, 346, 115224.

    CAS  Google Scholar 

  61. Zhang, X.; Wang, S.; Xue, C. J.; **n, C. Z.; Lin, Y. H.; Shen, Y.; Li, L. L.; Nan, C. W. Self-suppression of lithium dendrite in all-solidstate lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 2019, 31, 1806082.

    Google Scholar 

  62. Chen, L. K.; Gu, T.; Ma, J. B.; Yang, K.; Shi, P. R.; Biao, J.; Mi, J. S.; Liu, M.; Lv, W.; He, Y. B. In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Nano Energy 2022, 100, 107470.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Stable Supporting Fund of Shenzhen (No. GXWD20201230155427003-20200728114835006).

The authors would like to thank the shiyanjia lab (https://www.shiyanjia.com) for the DFT calculation support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ngjun Liu or Junwei Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Tang, Q., Zhang, Q. et al. A flexible solid polymer electrolyte enabled with lithiated zeolite for high performance lithium battery. Nano Res. 16, 9443–9452 (2023). https://doi.org/10.1007/s12274-023-5658-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5658-2

Keywords

Navigation