Log in

Advances in microwave absorbing materials with broad-bandwidth response

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Microwave absorbing materials (MAMs) are playing an increasingly essential role in the development of wireless communications, high-power electronic devices, and advanced target detection technology. MAMs with a broad-bandwidth response are particularly important in the area of communication security, radiation prevention, electronic reliability, and military stealth. Although considerable progress has been made in the design and preparation of MAMs with a broad-bandwidth response, a number of challenges still remain, and the structure–function relationship of MAMs is still far from being completely understood. Herein, the advances in the design and research of MAMs with a broad-bandwidth response are outlined. The main strategies for expanding the effective absorption bandwidth of MAMs are comprehensively summarized considering three perspectives: the chemical combination strategy, morphological control strategy, and macrostructure control strategy. Several important results as well as design principles and absorption mechanisms are highlighted. A coherent explanation detailing the influence of the chemical composition and structure of various materials on the microwave absorption properties of MAMs is provided. The main challenges, new opportunities, and future perspectives in this promising field are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

    CAS  Google Scholar 

  2. Zhang, Y.; Huang, Y.; Chen, H. H.; Huang, Z. Y.; Yang, Y.; **ao, P. S.; Zhou, Y.; Chen, Y. S. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438–447.

    CAS  Google Scholar 

  3. Wu, Z. C.; Cheng, H. W.; **, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

    CAS  Google Scholar 

  4. Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

    CAS  Google Scholar 

  5. Watts, C. M.; Liu, X. L.; Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120.

    CAS  Google Scholar 

  6. Li, Q.; Zhang, Z.; Qi, L. P.; Liao, Q. L.; Kang, Z.; Zhang, Y. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 2019, 6, 1801057.

    Google Scholar 

  7. Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

    Google Scholar 

  8. Shu, J. C.; Cao, W. Q.; Cao, M. S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470.

    CAS  Google Scholar 

  9. Tao, J. Q.; Xu, L. L.; **, H. S.; Gu, Y. S.; Zhou, J. T.; Yao, Z. J.; Tao, X. W.; Chen, P.; Wang, D. H.; Li, Z. et al. Selective coding dielectric genes based on proton tailoring to improve microwave absorption of MOFs. Adv. Powder Mater. 2023, 2, 100091.

    Google Scholar 

  10. Tirkey, M. M.; Gupta, N. The quest for perfect electromagnetic absorber: A review. Int. J. Microw. Wireless Technol. 2019, 11, 151–167.

    Google Scholar 

  11. Cao, M. S.; Shu, J. C.; Wen, B.; Wang, X. X.; Cao, W. Q. Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature. Small Struct. 2021, 2, 2100104.

    CAS  Google Scholar 

  12. Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

    CAS  Google Scholar 

  13. Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

    Google Scholar 

  14. Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.

    CAS  Google Scholar 

  15. Quan, B.; Shi, W. H.; Ong, S. J. H.; Lu, X. C.; Wang, P. L.; Ji, G. B.; Guo, Y. F.; Zheng, L. R.; Xu, Z. J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 2019, 29, 1901236.

    Google Scholar 

  16. **ao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; **e, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

    CAS  Google Scholar 

  17. Zhi, D. D.; Li, T.; Li, J. Z.; Ren, H. S.; Meng, F. B. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Compos. Part B: Eng. 2021, 211, 108642.

    CAS  Google Scholar 

  18. Ren, S. N.; Yu, H. J.; Wang, L.; Huang, Z. K.; Lin, T. F.; Huang, Y. D.; Yang, J.; Hong, Y. C.; Liu, J. Y. State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 2022, 14, 68.

    CAS  Google Scholar 

  19. Guan, H. T.; Wang, Q. Y.; Wu, X. F.; Pang, J.; Jiang, Z. Y.; Chen, G.; Dong, C. J.; Wang, L. H.; Gong, C. H. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B: Eng. 2021, 207, 108562.

    CAS  Google Scholar 

  20. Bhattacharjee, Y.; Bose, S. Core-shell nanomaterials for microwave absorption and electromagnetic interference shielding: A review. ACS Appl. Nano Mater. 2021, 4, 949–972.

    CAS  Google Scholar 

  21. Wang, G. H.; Ong, S. J. H.; Zhao, Y.; Xu, Z. J.; Ji, G. B. Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 2020, 8, 24368–24387.

    CAS  Google Scholar 

  22. Yan, J.; Huang, Y.; Liu, X. D.; Zhao, X. X.; Li, T. H.; Zhao, Y.; Liu, P. B. Polypyrrole-based composite materials for electromagnetic wave absorption. Polym. Rev. 2021, 61, 646–687.

    CAS  Google Scholar 

  23. Tao, J. Q.; Tan, R. Y.; Xu, L. L.; Zhou, J. T.; Yao, Z. J.; Lei, Y. M.; Chen, P.; Li, Z.; Ou, J. Z. Ion-exchange strategy for metal-organic frameworks-derived composites with tunable hollow porous and microwave absorption. Small Methods 2022, 6, 2200429.

    CAS  Google Scholar 

  24. Zhang, M.; Cao, M. S.; Shu, J. C.; Cao, W. Q.; Li, L.; Yuan, J. Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng.: R: Rep. 2021, 145, 100627.

    Google Scholar 

  25. Green, M.; Tian, L. H.; **ang, P.; Murowchick, J.; Tan, X. Y.; Chen, X. B. FeP nanoparticles: A new material for microwave absorption. Mater. Chem. Front. 2018, 2, 1119–1125.

    CAS  Google Scholar 

  26. Rozanov, K. N.; Starostenko, S. N. Numerical study of bandwidth of radar absorbers. Eur. Phys. J. Appl. Phys. 1999, 8, 147–151.

    Google Scholar 

  27. Rozanov, K. N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 2000, 48, 1230–1234.

    Google Scholar 

  28. Kuzhir, P.; Celzard, A.; Chen, X. B. Microwave absorption by carbon-based materials and structures. J. Appl. Phys. 2022, 131, 200401.

    CAS  Google Scholar 

  29. Choudhary, A.; Pal, S.; Sarkhel, G. Broadband millimeter-wave absorbers: A review. Int. J. Microw. Wireless Technol., in press, https://doi.org/10.1017/S1759078722000162.

  30. Tretyakov, S. Thin absorbers: Operational principles and various realizations. IEEE Electromagn. Compat. Mag. 2016, 5, 61–66.

    Google Scholar 

  31. Ra’di, Y.; Simovski, C. R.; Tretyakov, S. A. Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations. Phys. Rev. Appl. 2015, 3, 037001.

    Google Scholar 

  32. Green, M.; Li, Y.; Peng, Z. H.; Chen, X. B. Dielectric, magnetic, and microwave absorption properties of polyoxometalate-based materials. J. Magn. Magn. Mater. 2020, 497, 165974.

    CAS  Google Scholar 

  33. Green, M.; **ang, P.; Liu, Z. Q.; Murowchick, J.; Tan, X. Y.; Huang, F. Q.; Chen, X. B. Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles. J. Materiomics 2019, 5, 133–146.

    Google Scholar 

  34. Huang, M. Q.; Wang, L.; You, W. B.; Che, R. C. Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small 2021, 17, 2101416.

    CAS  Google Scholar 

  35. Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593.

    CAS  Google Scholar 

  36. Chen, H. H.; Huang, Z. Y.; Huang, Y.; Zhang, Y.; Ge, Z.; Qin, B.; Liu, Z. F.; Shi, Q.; **ao, P. S.; Yang, Y. et al. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 2017, 124, 506–514.

    CAS  Google Scholar 

  37. Yao, X.; Huang, Y. Q.; Li, G. Y.; He, Q. T.; Chen, H. Y.; Weng, X. L.; Liang, D. F.; **e, J. L.; Deng, L. J. Design of an ultra-broadband microwave metamaterial absorber based on multilayer structures. Int. J. RF Microw. Comput. Aid. Eng. 2022, 32, e23222.

    Google Scholar 

  38. Lin, H. R.; Green, M.; Xu, L. J.; Chen, X. B.; Ma, B. W. Microwave absorption of organic metal halide nanotubes. Adv. Mater. Interfaces 2020, 7, 1901270.

    CAS  Google Scholar 

  39. Green, M.; Chen, X. B. Recent progress of nanomaterials for microwave absorption. J. Materiomics 2019, 5, 503–541.

    Google Scholar 

  40. Qu, S. C.; Hou, Y. X.; Sheng, P. Conceptual-based design of an ultrabroadband microwave metamaterial absorber. Proc. Natl. Acad. Sci. USA 2021, 118, e2110490118.

    CAS  Google Scholar 

  41. Wang, J. Y.; ** algorithm for absorptive frequency-selective transmission metasurface. Adv. Opt. Mater. 2022, 10, 2200178.

    CAS  Google Scholar 

  42. Wang, W.; Guo, J. X.; Long, C.; Li, W.; Guan, J. G. Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. J. Alloys Compd. 2015, 637, 106–111.

    CAS  Google Scholar 

  43. Tong, G. X.; Wu, W. H.; Hua, Q.; Miao, Y. Q.; Guan, J. G.; Qian, H. S. Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2–18 GHz ranges. J. Alloys Compd. 2011, 509, 451–456.

    CAS  Google Scholar 

  44. Zeng, X. J.; Cheng, X. Y.; Yu, R. H.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623.

    CAS  Google Scholar 

  45. Green, M.; Tian, L. H.; **ang, P.; Murowchick, J.; Tan, X. Y.; Chen, X. B. Co2P nanoparticles for microwave absorption. Mater. Today Nano 2018, 1, 1–7.

    Google Scholar 

  46. Wang, L.; Li, X.; Shi, X. F.; Huang, M. Q.; Li, X. H.; Zeng, Q. W.; Che, R. C. Recent progress of microwave absorption microspheres by magnetic–dielectric synergy. Nanoscale 2021, 13, 2136–2156.

    CAS  Google Scholar 

  47. Green, M.; Liu, Z. Q.; **ang, P.; Liu, Y.; Zhou, M. J.; Tan, X. Y.; Huang, F. Q.; Liu, L.; Chen, X. B. Doped, conductive SiO2 nanoparticles for large microwave absorption. Light: Sci. Appl. 2018, 7, 87.

    Google Scholar 

  48. Green, M.; Liu, Z.; Smedley, R.; Nawaz, H.; Li, X.; Huang, F.; Chen, X. Graphitic carbon nitride nanosheets for microwave absorption. Mater. Today Phys. 2018, 5, 78–86.

    Google Scholar 

  49. Li, H.; Cao, Z. M.; Lin, J. Y.; Zhao, H.; Jiang, Q. R.; Jiang, Z. Y.; Liao, H. G.; Kuang, Q.; **e, Z. X. Synthesis of u-channelled spherical Fex(CoyNi1−y)100−x Janus colloidal particles with excellent electromagnetic wave absorption performance. Nanoscale 2018, 10, 1930–1938.

    CAS  Google Scholar 

  50. Darvishzadeh, A.; Nasouri, K. Broadband and tunable high-performance microwave absorption properties by Ni-coated carbon fibers. Mater. Chem. Phys. 2021, 274, 125127.

    CAS  Google Scholar 

  51. Cao, M. S.; Han, C.; Wang, X. X.; Zhang, M.; Zhang, Y. L.; Shu, J. C.; Yang, H. J.; Fang, X. Y.; Yuan, J. Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 2018, 6, 4586–4602.

    CAS  Google Scholar 

  52. Chen, C.; **, J. B.; Zhou, E. Z.; Peng, L.; Chen, Z. C.; Gao, C. Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 2018, 10, 26.

    Google Scholar 

  53. Meng, F. B.; Wang, H. G.; Huang, F.; Guo, Y. F.; Wang, Z. Y.; Hui, D.; Zhou, Z. W. Graphene-based microwave absorbing composites: A review and prospective. Compos. Part B: Eng. 2018, 137, 260–277.

    CAS  Google Scholar 

  54. Li, J. S.; Huang, H.; Zhou, Y. J.; Zhang, C. Y.; Li, Z. T. Research progress of graphene-based microwave absorbing materials in the last decade. J. Mater. Res. 2017, 32, 1213–1230.

    CAS  Google Scholar 

  55. Chen, H. H.; Ma, W. L.; Huang, Z. Y.; Zhang, Y.; Huang, Y.; Chen, Y. S. Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 2019, 7, 1801318.

    Google Scholar 

  56. Zhang, M. M.; Zhang, J. W.; Lv, X. Y.; Zhang, L.; Wei, Y.; Liu, S. C.; Shi, Y. P.; Gong, C. H. How to exhibit the efficient electromagnetic wave absorbing performance of RGO aerogels: Less might be better. J. Mater. Sci.: Mater. Electron. 2018, 29, 5496–5500.

    CAS  Google Scholar 

  57. Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

    CAS  Google Scholar 

  58. Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

    CAS  Google Scholar 

  59. Lv, H. L.; Guo, Y. H.; Yang, Z. H.; Cheng, Y.; Wang, L. P.; Zhang, B. S.; Zhao, Y.; Xu, Z. J.; Ji, G. B. A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. J. Mater. Chem. C 2017, 5, 491–512.

    CAS  Google Scholar 

  60. Wang, T. S.; Liu, Z. H.; Lu, M. M.; Wen, B.; Ouyang, Q. Y.; Chen, Y. J.; Zhu, C. L.; Gao, P.; Li, C. Y.; Cao, M. S. et al. Graphene-Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties. J. Appl. Phys. 2013, 113, 024314.

    Google Scholar 

  61. Bao, S. S.; Tang, W.; Song, Z. J.; Jiang, Q. R.; Jiang, Z. Y.; **e, Z. X. Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance. Nanoscale 2020, 12, 18790–18799.

    CAS  Google Scholar 

  62. Zhang, H. X.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Chen, L.; Zhang, C. H.; Liu, X. H.; Wu, G. L. In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. Part B: Eng 2020, 199, 108261.

    CAS  Google Scholar 

  63. Zhang, X. J.; Wang, G. S.; Cao, W. Q.; Wei, Y. Z.; Liang, J. F.; Guo, L.; Cao, M. S. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 2014, 6, 7471–7478.

    CAS  Google Scholar 

  64. Hu, Q.; Qi, X. S.; Cai, H. B.; **e, R.; Long, L.; Bai, Z. C.; Jiang, Y.; Qin, S. J.; Zhong, W.; Du, Y. W. Preparation of porous Fe2O3 nanorods-reduced graphene oxide nanohybrids and their excellent microwave absorption properties. Sci. Rep. 2017, 7, 11213.

    Google Scholar 

  65. Zhu, Z. T.; Sun, X.; Xue, H. R.; Guo, H.; Fan, X. L.; Pan, X. C.; He, J. P. Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties. J. Mater. Chem. C 2014, 2, 6582–6591.

    CAS  Google Scholar 

  66. Quan, B.; Liang, X. H.; Ji, G. B.; Lv, J.; Dai, S. S.; Xu, G. Y.; Du, Y. W. Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 2018, 129, 310–320.

    CAS  Google Scholar 

  67. Wang, S. S.; Xu, Y. C.; Fu, R. R.; Zhu, H. H.; Jiao, Q. Z.; Feng, T. Y.; Feng, C. H.; Shi, D. X.; Li, H. S.; Zhao, Y. Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 2019, 11, 76.

    CAS  Google Scholar 

  68. Ding, L.; Zhao, X. X.; Huang, Y.; Yan, J.; Li, T. H.; Liu, P. B. Ultra-broadband and covalently linked core-shell CoFe2O4@PPy nanoparticles with reduced graphene oxide for microwave absorption. J. Colloid Interface Sci. 2021, 595, 168–177.

    CAS  Google Scholar 

  69. Weng, X. D.; Li, B. Z.; Zhang, Y.; Lv, X. L.; Gu, G. X. Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. J. Alloys Compd. 2017, 695, 508–519.

    CAS  Google Scholar 

  70. Afghahi, S. S. S.; Shokuhfar, A. Two step synthesis, electromagnetic and microwave absorbing properties of FeCo@C core-shell nanostructure. J. Magn. Magn. Mater. 2014, 370, 37–44.

    CAS  Google Scholar 

  71. Yuan, H. R.; Yan, F.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2018, 10, 1399–1407.

    CAS  Google Scholar 

  72. Cui, X. J.; Jiang, Q. R.; Wang, C. S.; Wang, S. H.; Jiang, Z. Y.; Li, X. A.; Deng, D. H. Encapsulating FeCo alloys by single layer graphene to enhance microwave absorption performance. Mater. Today Nano 2021, 16, 100138.

    CAS  Google Scholar 

  73. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    CAS  Google Scholar 

  74. Deng, R. X.; Chen, B. B.; Li, H. G.; Li, Z.; Zhang, T.; Yu, Y.; Song, L. X. Adjustable electromagnetic response of ultralight 3D Ti3C2Tx composite via control of crystal defects. Appl. Surf. Sci. 2021, 569, 151053.

    CAS  Google Scholar 

  75. Qing, Y. C.; Zhou, W. C.; Luo, F.; Zhu, D. M. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 2016, 42, 16412–16416.

    CAS  Google Scholar 

  76. Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

    Google Scholar 

  77. Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

    CAS  Google Scholar 

  78. He, J.; Liu, S.; Deng, L. W.; Shan, D. Y.; Cao, C.; Luo, H.; Yan, S. Q. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites. Appl. Surf. Sci. 2020, 504, 144210.

    CAS  Google Scholar 

  79. He, J.; Shan, D. Y.; Yan, S. Q.; Luo, H.; Cao, C.; Peng, Y. H. Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance. J. Magn. Magn. Mater. 2019, 492, 165639.

    CAS  Google Scholar 

  80. Yan, S. Q.; Cao, C.; He, J.; He, L. H.; Qu, Z. W. Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 Mxene/flaky carbonyl iron composites. J. Mater. Sci.: Mater. Electron. 2019, 30, 6537–6543.

    CAS  Google Scholar 

  81. Feng, W. L.; Luo, H.; Wang, Y.; Zeng, S. F.; Tan, Y. Q.; Deng, L. W.; Zhou, X. S.; Zhang, H. B.; Peng, S. M. Mxenes derived laminated and magnetic composites with excellent microwave absorbing performance. Sci. Rep. 2019, 9, 3957.

    Google Scholar 

  82. Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; **a, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

    CAS  Google Scholar 

  83. Liu, J. W.; Xu, J. J.; Che, R. C.; Chen, H. J.; Liu, M. M.; Liu, Z. W. Hierarchical Fe3O4@TiO2 yolk–shell microspheres with enhanced microwave-absorption properties. Chem.Eur. J. 0133, 19, 6746–6752.

    Google Scholar 

  84. Hua, J. S.; Ma, W. J.; Liu, X. Y.; Zhuang, Q. X.; Wu, Z. Y.; Huang, H.; Lin, S. L. Efficient microwave traps with markedly enhanced interfacial polarization and impedance matching enabled by dual-shelled, dual-cavity magnetic@dielectric hollow nanospheres. J. Mater. Chem. C 2020, 8, 16489–16497.

    CAS  Google Scholar 

  85. Zhang, C. W.; Peng, Y.; Zhang, T. L.; Guo, W. B.; Yuan, Y.; Li, Y. B. In situ dual-template method of synthesis of inverse-opal Co3O4@TiO2 with wideband microwave absorption. Inorg. Chem. 2021, 90, 18455–18465.

    Google Scholar 

  86. Dhawan, S. K.; Singh, K.; Bakhshi, A. K.; Ohlan, A. Conducting polymer embedded with nanoferrite and titanium dioxide nanoparticles for microwave absorption. Synth. Met. 2009, 159, 2259–2262.

    CAS  Google Scholar 

  87. Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; **, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949–6956.

    CAS  Google Scholar 

  88. Yang, M. L.; Yuan, Y.; Li, Y.; Sun, X. X.; Wang, S. S.; Liang, L.; Ning, Y. H.; Li, J. J.; Yin, W. L.; Che, R. C. et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 2020, 161, 517–527.

    CAS  Google Scholar 

  89. Wu, Q.; Wang, B. L.; Fu, Y. G.; Zhang, Z. F.; Yan, P. F.; Liu, T. MOF-derived Co/CoO particles prepared by low temperature reduction for microwave absorption. Chem. Eng. J. 2021, 410, 128378.

    CAS  Google Scholar 

  90. Wang, L.; Wen, B.; Yang, H. B.; Qiu, Y.; He, N. R. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A: Appl. Sci. Manuf. 2020, 135, 105958.

    CAS  Google Scholar 

  91. Wang, L.; Du, Z.; Bai, X. Y.; Lin, Y. Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption. J. Colloid Interface Sci. 2021, 591, 76–84.

    CAS  Google Scholar 

  92. Luo, J. H.; Zhang, K.; Cheng, M. L.; Gu, M. M.; Sun, X. K. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 2020, 380, 122625.

    CAS  Google Scholar 

  93. Najim, M.; Modi, G.; Mishra, Y. K.; Adelung, R.; Singh, D.; Agarwala, V. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures. Phys. Chem. Chem. Phys. 2015, 17, 22923–22933.

    CAS  Google Scholar 

  94. Lu, M. M.; Cao, W. Q.; Shi, H. L.; Fang, X. Y.; Yang, J.; Hou, Z. L.; **, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2014, 2, 10540.

    CAS  Google Scholar 

  95. **a, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 2013, 25, 6905–6910.

    CAS  Google Scholar 

  96. **a, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 2014, 29, 2198–2210.

    CAS  Google Scholar 

  97. Shi, X. F.; Liu, Z. W.; Li, X.; You, W. B.; Shao, Z. Z.; Che, R. C. Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2−x heterostructure for broadband microwave absorption. Chem. Eng. J. 2021, 419, 130020.

    CAS  Google Scholar 

  98. Green, M.; Van Tran, A. T.; Smedley, R.; Roach, A.; Murowchick, J.; Chen, X. B. Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles. Nano Mater. Sci. 2019, 1, 48–59.

    Google Scholar 

  99. Tian, L. H.; Xu, J. L.; Just, M.; Green, M.; Liu, L.; Chen, X. B. Broad range energy absorption enabled by hydrogenated TiO2 nanosheets: From optical to infrared and microwave. J. Mater. Chem. C 2017, 5, 4645–4653.

    CAS  Google Scholar 

  100. Ni, Q. Q.; Zhu, Y. F.; Yu, L. J.; Fu, Y. Q. One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application. Nanoscale Res. Lett. 2015, 10, 174.

    Google Scholar 

  101. Munir, A. Microwave radar absorbing properties of multiwalled carbon nanotubes polymer composites: A review. Adv. Polym. Technol. 2017, 36, 362–370.

    CAS  Google Scholar 

  102. Wen, F. S.; Zhang, F.; Liu, Z. Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 2011, 115, 14025–14030.

    CAS  Google Scholar 

  103. Sarkar, D.; Bhattacharya, A.; Nandy, P.; Das, S. Enhanced broadband microwave reflection loss of carbon nanotube ensheathed Ni-Zn-Co-ferrite magnetic nanoparticles. Mater. Lett. 2014, 120, 259–262.

    CAS  Google Scholar 

  104. Li, N.; Huang, G. W.; Li, Y. Q.; **ao, H. M.; Feng, Q. P.; Hu, N.; Fu, S. Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983.

    CAS  Google Scholar 

  105. Jiao, Z. M.; Qiu, J. Microwave absorption performance of iron oxide/multiwalled carbon nanotubes nanohybrids prepared by electrostatic attraction. J. Mater. Sci. 2018, 53, 3640–3646.

    CAS  Google Scholar 

  106. Kuang, D. T.; Wang, S. L.; Hou, L. Z.; Luo, H.; Deng, L. W.; Chen, C. S.; Song, M.; Mead, J. L.; Huang, H. A Comparative study on the dielectric response and microwave absorption performance of FeNi-capped carbon nanotubes and FeNi-cored carbon nanoparticles. Nanotechnology 2021, 32, 105701.

    Google Scholar 

  107. Saeed, M. S.; Seyed-Yazdi, J.; Hekmatara, S. H. Surface modification of MWCNT with cluster form of Fe2O3/Fe3O4 NPs for improving their microwave absorption performance. Chem. Phys. Lett. 2020, 756, 137823.

    CAS  Google Scholar 

  108. Saeed, M. S.; Seyed-Yazdi, J.; Hekmatara, H. Fe2O3/Fe3O4/PANI/MWCNT nanocomposite with the optimum amount and uniform orientation of Fe2O3/Fe3O4 NPs in polyaniline for high microwave absorbing performance. J. Alloys Compd. 2020, 843, 156052.

    Google Scholar 

  109. Liang, X. H.; Quan, B.; Chen, J. B.; Gu, W. H.; Zhang, B. S.; Ji, G. B. Nano bimetallic@carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications. ACS Appl. Nano Mater. 2018, 1, 5712–5721.

    CAS  Google Scholar 

  110. Song, Y.; Yin, F. X.; Zhang, C. W.; Guo, W. B.; Han, L. Y.; Yuan, Y. Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 2021, 13, 76.

    Google Scholar 

  111. Fan, Y. Q.; Li, Y. H.; Yao, Y. L.; Sun, Y.; Tong, B. H.; Zhan, J. Hierarchically porous carbon sheets/Co nanofibers derived from corncobs for enhanced microwave absorbing properties. Appl. Surf. Sci. 2020, 534, 147510.

    CAS  Google Scholar 

  112. Liu, P. B.; Zhu, C. Y.; Gao, S.; Guan, C.; Huang, Y.; He, W. J. N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 2020, 163, 348–359.

    CAS  Google Scholar 

  113. Wen, B.; Yang, H. B.; Wang, L.; Qiu, Y. Hierarchical CoxAly layered double hydroxide@carbon composites derived from metal-organic frameworks with efficient broadband electromagnetic wave absorption. J. Mater. Chem. C 2020, 8, 16418–16426.

    CAS  Google Scholar 

  114. Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Luo, J. H. Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos. Part B: Eng. 2020, 202, 108406.

    CAS  Google Scholar 

  115. Zhang, X. M.; Ji, G. B.; Liu, W.; Quan, B.; Liang, X. H.; Shang, C. M.; Cheng, Y.; Du, Y. W. Thermal conversion of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932–12942.

    CAS  Google Scholar 

  116. Chen, Y. J.; Cao, M. S.; Wang, T. H.; Wan, Q. Microwave absorption properties of the ZnO nanowire-polyester composites. Appl. Phys. Lett. 2004, 84, 3367–3369.

    CAS  Google Scholar 

  117. Wang, L.; Li, X.; Li, Q. Q.; Yu, X. F.; Zhao, Y. H.; Zhang, J.; Wang, M.; Che, R. C. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 2019, 15, 1900900.

    Google Scholar 

  118. Feng, W.; Wang, Y. M.; Chen, J. C.; Wang, L.; Guo, L. X.; Ouyang, J. H.; Jia, D. C.; Zhou, Y. Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: Facile synthesis and enhanced microwave absorption properties. Carbon 2016, 108, 52–60.

    CAS  Google Scholar 

  119. Zhou, Z. W.; Chu, L. S.; Hu, S. C. Microwave absorption behaviors of tetra-needle-like ZnO whiskers. Mater. Sci. Eng.: B 2006, 126, 93–96.

    CAS  Google Scholar 

  120. Wu, Q. B.; Zhao, W.; Zeng, G. X.; Zhang, H. Y.; Wei, A. X.; Wang, J. Microwave absorption properties of Mn- and Ni-doped zinc oxides. J. Vac. Sci. Technol. A 2011, 29, 03A113.

    Google Scholar 

  121. Tang, X.; Hu, K. A. Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites. Mater. Sci. Eng.: B 2007, 139, 119–123.

    CAS  Google Scholar 

  122. Cao, J.; Fu, W. Y.; Yang, H. B.; Yu, Q. J.; Zhang, Y. Y.; Liu, S. K.; Sun, P.; Zhou, X. M.; Leng, Y.; Wang, S. M. et al. Large-scale synthesis and microwave absorption enhancement of actinomorphic tubular ZnO/CoFe2O4 nanocomposites. J. Phys. Chem. B 2009, 113, 4642–4647.

    CAS  Google Scholar 

  123. Guan, X. M.; Yang, Z. H.; Zhou, M.; Yang, L.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. 2D MXene nanomaterials: Synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 2022, 3, 2200102.

    CAS  Google Scholar 

  124. Wu, Y. H.; Wang, G. D.; Yuan, X. X.; Fang, G.; Li, P.; Ji, G. B. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 2023, 16, 2611–2621.

    CAS  Google Scholar 

  125. Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 2022, 9, 2204165.

    CAS  Google Scholar 

  126. Huang, Q. Q.; Zhao, Y.; Wu, Y.; Zhou, M.; Tan, S. J.; Tang, S. L.; Ji, G. B. A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem. Eng. J. 2022, 446, 137279.

    CAS  Google Scholar 

  127. Bao, S. S.; Song, Z. J.; Mao, R. J.; Li, Y.; Zhang, S. H.; Jiang, Z. Y.; Li, X. A.; **e, Z. X. Synthesis of hollow rod-like hierarchical structures assembled by CoFe/C nanosheets for enhanced microwave absorption. J. Mater. Chem. C 2021, 9, 13860–13868.

    CAS  Google Scholar 

  128. Han, Z.; Li, D.; Wang, H.; Liu, X. G.; Li, J.; Geng, D. Y.; Zhang, Z. D. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules. Appl. Phys. Lett. 2009, 95, 023114.

    Google Scholar 

  129. Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selectivefrequency absorptions. Nano Res. 2017, 10, 1595–1607.

    CAS  Google Scholar 

  130. Liu, Q. H.; Xu, X. H.; **a, W. X.; Che, R. C.; Chen, C.; Cao, Q.; He, J. G. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 2015, 7, 1736–1743.

    CAS  Google Scholar 

  131. Almessiere, M. A.; Algarou, N. A.; Slimani, Y.; Sadaqat, A.; Baykal, A.; Manikandan, A.; Trukhanov, S. V.; Trukhanov, A. V.; Ercan, I. Investigation of exchange coupling and microwave properties of hard/soft (SrNi0.02Zr0.01Fe11.96O19)/(CoFe2O4)x nanocomposites. Mater. Today Nano 2022, 18, 100186.

    CAS  Google Scholar 

  132. Tao, F. J.; Green, M.; Van Tran, A. T.; Zhang, Y. L.; Yin, Y. S.; Chen, X. B. Plasmonic Cu9S5 nanonets for microwave absorption. ACS Appl. Nano Mater. 2019, 2, 3836–3847.

    CAS  Google Scholar 

  133. Lv, H. L.; Liang, X. H.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783.

    CAS  Google Scholar 

  134. Duan, Y. P.; Liu, Z.; **g, H.; Zhang, Y. H.; Li, S. Q. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 2012, 22, 18291–18299.

    CAS  Google Scholar 

  135. Jazirehpour, M.; Seyyed Ebrahimi, S. A. Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles. J. Alloys Compd. 2015, 638, 188–196.

    CAS  Google Scholar 

  136. Gill, N.; Singh, J.; Puthucheri, S.; Singh, D. Thin and broadband two-layer microwave absorber in 4–12 GHz with developed flaky cobalt material. Electron. Mater. Lett. 2018, 14, 288–297.

    CAS  Google Scholar 

  137. Li, Q. Q.; Liu, J. W.; Zhao, Y. H.; Zhao, X. B.; You, W. B.; Li, X.; Che, R. C. “Matryoshka doll”-like CeO2 microspheres with hierarchical structure to achieve significantly enhanced microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 27540–27547.

    CAS  Google Scholar 

  138. Zhang, R. X.; Wang, L.; Xu, C. Y.; Liang, C. Y.; Liu, X. H.; Zhang, X. F.; Che, R. C. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency. Nano Res. 2022, 15, 6743–6750.

    CAS  Google Scholar 

  139. Liu, X. F.; Hao, C. C.; He, L. H.; Yang, C.; Chen, Y. B.; Jiang, C. B.; Yu, R. H. Yolk-shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182.

    CAS  Google Scholar 

  140. Yang, B. T.; Fang, J. F.; Xu, C. Y.; Cao, H.; Zhang, R. X.; Zhao, B.; Huang, M. Q.; Wang, X. Y.; Lv, H. L.; Che, R. C. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 170.

    CAS  Google Scholar 

  141. Cheng, Y. F.; Bi, H.; Wang, C.; Cao, Q.; Jiao, W. L.; Che, R. C. Dual-ligand mediated one-pot self-assembly of Cu/ZnO core/shell structures for enhanced microwave absorption. RSC Adv. 2016, 6, 41724–41733.

    CAS  Google Scholar 

  142. Liu, L.; He, P. G.; Zhou, K. C.; Chen, T. F. Microwave absorption properties of helical carbon nanofibers-coated carbon fibers. AIP Adv. 2013, 3, 082112.

    Google Scholar 

  143. Tong, G. X.; Wu, W. H.; Guan, J. G.; Wang, J. P.; Ma, J.; Yuan, J. H.; Wang, S. L. Solution synthesis and novel magnetic properties of ball-chain iron nanofibers. J. Mater. Res. 2011, 26, 2590–2598.

    CAS  Google Scholar 

  144. Liang, C. Y.; Wang, Z. J. Controllable fabricating dielectric-dielectric SiC@C core–shell nanowires for high-performance electromagnetic wave attenuation. ACS Appl. Mater. Interfaces 2017, 9, 40690–40696.

    CAS  Google Scholar 

  145. Huang, Y.; **e, A. M.; Seidi, F.; Zhu, W. Y.; Li, H.; Yin, S.; Xu, X.; **ao, H. N. Core–shell heterostructured nanofibers consisting of Fe7S8 nanoparticles embedded into S-doped carbon nanoshells for superior electromagnetic wave absorption. Chem. Eng. J. 2021, 423, 130307.

    CAS  Google Scholar 

  146. Li, X. H.; Guo, X. H.; Liu, T. C.; Zheng, X. L.; Bai, J. T. Shape-controlled synthesis of Fe nanostructures and their enhanced microwave absorption properties at L-band. Mater. Res. Bull. 2014, 59, 137–141.

    CAS  Google Scholar 

  147. Niu, F. X.; Wang, Y. X.; Ma, L. R.; **e, Z. Y.; Wang, Y. Y.; Wang, C. G.; Mao, Y. P. Achieving enhanced dielectric property via growing Co-Ni-P nano-alloys on SiC nanowires with 3D conductive network. J. Alloys Compd. 2019, 778, 933–941.

    CAS  Google Scholar 

  148. Li, Z. C.; Ye, F.; Cheng, L. F.; Wang, P.; Guo, C. C.; Li, M. H.; Zhang, L. T. Synthesis of Si-C-N aligned nanofibers with preeminent electromagnetic wave absorption in ultra-broad band. J. Mater. Chem. C 2021, 9, 16966–16977.

    CAS  Google Scholar 

  149. Yang, J. N.; Guan, G. G.; Yan, L.; Xu, J. H.; **ang, J.; Zhang, K. Y. FeCo/ZnO composite nanofibers for broadband and high efficiency microwave absorption. Adv. Mater. Interfaces 2021, 8, 2101047.

    CAS  Google Scholar 

  150. Liu, X. G.; Geng, D. Y.; Meng, H.; Shang, P. J.; Zhang, Z. D. Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl. Phys. Lett. 2008, 92, 173117.

    Google Scholar 

  151. He, P.; Hou, Z. L.; Zhang, K. L.; Li, J.; Yin, K.; Feng, S.; Bi, S. Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 2017, 52, 8258–8267.

    CAS  Google Scholar 

  152. Wang, X.; Gong, R. Z.; Li, P. G.; Liu, L. Y.; Cheng, W. M. Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes. Mater. Sci. Eng.: A 2007, 466, 178–182.

    Google Scholar 

  153. Gill, N.; Puthucheri, S.; Singh, D.; Agarwala, V. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 2–8 GHz. J. Mater. Sci.: Mater. Electron 2017, 28, 1259–1270.

    CAS  Google Scholar 

  154. Qian, K.; Li, Q. F.; Sokolov, A.; Yu, C. J.; Kulik, P.; Fitchorova, O.; Chen, Y. J.; Chinnasamy, C.; Harris, V. G. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites. J. Mater. Sci. Technol. 2021, 83, 256–263.

    CAS  Google Scholar 

  155. Yan, J.; Huang, Y.; Zhang, X. Y.; Gong, X.; Chen, C.; Nie, G. D.; Liu, X. D.; Liu, P. B. MoS2-decorated/integrated carbon fiber: Phase engineering well-regulated microwave absorber. Nano-Micro Lett. 2021, 13, 114.

    CAS  Google Scholar 

  156. Wang, Z.; Cheng, Z.; Fang, C. Q.; Hou, X. L.; **e, L. Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption. Compos. Part A: Appl. Sci. Manuf. 2020, 136, 105956.

    CAS  Google Scholar 

  157. Huang, L. N.; Chen, C. G.; Li, Z. J.; Zhang, Y. P.; Zhang, H.; Lu, J. G.; Ruan, S. C.; Zeng, Y. J. Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology 2019, 31, 162001.

    Google Scholar 

  158. Wang, P.; Zhang, J. M.; Chen, Y. W.; Wang, G. W.; Wang, D.; Wang, T.; Li, F. S. Magnetism and microwave absorption properties of Fe3O4 microflake-paraffin composites without and with magnetic orientation. J. Electron. Mater. 2018, 47, 721–729.

    CAS  Google Scholar 

  159. Liu, Y. F.; Wang, J.; Li, J. Y.; Tian, W.; Jian, X. Electrical discharge approach for large-scale and high-thermostability FeCoNi Kovar alloy microwave absorbers covering the low-frequency bands. J. Alloys Compd. 2022, 907, 164509.

    CAS  Google Scholar 

  160. Duan, Y. P.; Pang, H. F.; Wen, X.; Zhang, X. F.; Wang, T. M. Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent. J. Mater. Sci. Technol. 2021, 77, 209–216.

    CAS  Google Scholar 

  161. Zhang, Y. L.; Piao, M. X.; Zhang, H.; Zhang, F.; Chu, J.; Wang, X.; Shi, H. F.; Li, C. L. Synthesis of mesoporous hexagonal cobalt nanosheets with low permittivity for enhancing microwave absorption performances. J. Magn. Magn. Mater. 2019, 486, 165272.

    CAS  Google Scholar 

  162. Abshinova, M. A.; Li, Z. W. Effect of milling time on dynamic permeability values of reduced carbonyl iron filled composites. J. Magn. Magn. Mater. 2014, 369, 147–154.

    CAS  Google Scholar 

  163. Turtelli, R. S.; Grössinger, R.; Kussbach, C.; Sinnecker, J. P. Study of frequency dependencies of the complex magnetic Ac-permeability aftereffect in amorphous Fe64Co21B15 and Fe8Co77B15 alloys. J. Appl. Phys. 1998, 83, 1581–1587.

    Google Scholar 

  164. Ma, F.; Qin, Y.; Li, Y. Z. Enhanced microwave performance of cobalt nanoflakes with strong shape anisotropy. Appl. Phys. Lett. 2010, 96, 202507.

    Google Scholar 

  165. Wu, M. Z.; Zhang, Y. D.; Hui, S.; **ao, T. D.; Ge, S. H.; Hines, W. A.; Budnick, J. I.; Taylor, G. W. Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 2002, 80, 4404–4406.

    CAS  Google Scholar 

  166. He, J. H.; Wang, W.; Guan, J. G. Internal strain dependence of complex permeability of ball milled carbonyl iron powders in 2–18 GHz. J. Appl. Phys. 2012, 111, 093924.

    Google Scholar 

  167. Zhang, X. F.; Dong, X. L.; Huang, H.; Lv, B.; Lei, J. P.; Choi, C. J. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J. Phys. D: Appl. Phys. 2007, 40, 5383–5387.

    CAS  Google Scholar 

  168. Aharoni, A. Effect of surface anisotropy on the exchange resonance modes. J. Appl. Phys. 1997, 81, 830–833.

    CAS  Google Scholar 

  169. Peng, K. S.; Fang, G.; Guo, C.; Liu, C. Y.; Xu, G. Y.; **ao, A. D.; Zhang, Y. T.; Zhang, Y. J. Microwave absorption enhancement of FeCoNi contributed by improved crystallinity and flake-like particles. J. Magn. Magn. Mater. 2019, 490, 165488.

    CAS  Google Scholar 

  170. You, W. B.; Che, R. C. Excellent NiO-Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface. ACS Appl. Mater. Interfaces 2018, 10, 15104–15111.

    CAS  Google Scholar 

  171. Shi, X. F.; You, W. B.; Li, X.; Wang, L.; Shao, Z. Z.; Che, R. C. In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber. Chem. Eng. J. 2021, 415, 128951.

    CAS  Google Scholar 

  172. Zhang, Y. B.; Wang, P.; Wang, Y.; Qiao, L.; Wang, T.; Li, F. S. Synthesis and excellent electromagnetic wave absorption properties of parallel aligned FeCo@C core–shell nanoflake composites. J Mater. Chem. C 2015, 3, 10813–10818.

    CAS  Google Scholar 

  173. Zheng, J. J.; He, X. S.; Li, Y. C.; Zhao, B.; Ye, F. C.; Gao, C. F.; Li, M. J.; Li, X. P.; E, S. J. Viscoelastic and magnetically aligned flaky Fe-based magnetorheological elastomer film for wide-bandwidth electromagnetic wave absorption. Ind. Eng. Chem. Res. 2020, 59, 3425–3437.

    CAS  Google Scholar 

  174. Min, D. D.; Zhou, W. C.; Qing, Y.; Luo, F.; Zhu, D. M. Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field. J. Mater. Sci. 2017, 52, 2373–2383.

    CAS  Google Scholar 

  175. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    CAS  Google Scholar 

  176. Zhao, B.; Guo, X. Q.; Zhao, W. Y.; Deng, J. S.; Fan, B. B.; Shao, G.; Bai, Z. Y.; Zhang, R. Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 2017, 10, 331–343.

    CAS  Google Scholar 

  177. Li, H.; Bao, S. S.; Li, Y. M.; Huang, Y. Q.; Chen, J. Y.; Zhao, H.; Jiang, Z. Y.; Kuang, Q.; **e, Z. X. Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk-shell structures. ACS Appl. Mater. Interfaces 2018, 10, 28839–28849.

    CAS  Google Scholar 

  178. Liu, Z. W.; Che, R. C.; Wei, Y.; Liu, Y. P.; Elzatahry, A. A.; Dahyan, D. A.; Zhao, D. Broadening microwave absorption via a multi-domain structure. APL Mater. 2017, 5, 046104.

    Google Scholar 

  179. Deng, Z. M.; Li, Y.; Zhang, H. B.; Zhang, Y.; Luo, J. Q.; Liu, L. X.; Yu, Z. Z. Lightweight Fe@C hollow microspheres with tunable cavity for broadband microwave absorption. Compos. Part B: Eng. 2019, 177, 107346.

    CAS  Google Scholar 

  180. Zeng, Q.; **ong, X. H.; Chen, P.; Yu, Q.; Wang, Q.; Wang, R. C.; Chu, H. R. Air@rGO€Fe3O4 microspheres with spongy shells: Self-assembly and microwave absorption performance. J. Mater. Chem. C 2016, 4, 10518–10528.

    CAS  Google Scholar 

  181. He, N.; He, Z. D.; Liu, L.; Lu, Y.; Wang, F. Q.; Wu, W. H.; Tong, G. X. Ni2+ Guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1−x alloy hollow microspheres. Chem. Eng. J. 2020, 381, 122743.

    CAS  Google Scholar 

  182. Cheng, Y.; Cao, J. M.; Li, Y.; Li, Z. Y.; Zhao, H. Q.; Ji, G. B.; Du, Y. W. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption. ACS Sustainable Chem. Eng. 2018, 6, 1427–1435.

    CAS  Google Scholar 

  183. Liu, P. B.; Gao, S.; Liu, X. D.; Huang, Y.; He, W. J.; Li, Y. T. Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. Part B: Eng. 2020, 192, 107992.

    CAS  Google Scholar 

  184. You, W. B.; Bi, H.; She, W.; Zhang, Y.; Che, R. C. Dipolar-distribution cavity γ-Fe2O3@C@a-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 2017, 13, 1602779.

    Google Scholar 

  185. Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Synthesis and microwave absorption properties of yolk–shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl. Mater. Interfaces 2013, 5, 2503–2509.

    CAS  Google Scholar 

  186. Liu, Y.; Liu, X. X.; Wang, X. J. Double-layer microwave absorber based on CoFe2O4 ferrite and carbonyl iron composites. J. Alloys Compd. 2014, 584, 249–253.

    CAS  Google Scholar 

  187. Ling, A.; Tan, G. G.; Man, Q. K.; Lou, Y. X.; Chen, S. W.; Gu, X. S.; Li, R. W.; Pan, J.; Liu, X. C. Broadband microwave absorbing materials based on MWCNTs’ electromagnetic wave filtering effect. Compos. Part B: Eng. 2019, 171, 214–221.

    CAS  Google Scholar 

  188. Anwar, R. S.; Mao, L. F.; Ning, H. S. Frequency selective surfaces: A review. Appl. Sci. 2018, 8, 1689.

    Google Scholar 

  189. Chen, W. Q.; **ao, P. S.; Chen, H. H.; Zhang, H. T.; Zhang, Q. C.; Chen, Y. S. Polymeric graphene bulk materials with a 3D cross-linked monolithic graphene network. Adv. Mater. 2019, 31, 1802403.

    Google Scholar 

  190. Kong, L.; Yin, X. W.; Xu, H. L.; Yuan, X. Y.; Wang, T.; Xu, Z. W.; Huang, J. F.; Yang, R.; Fan, H. Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 2019, 145, 61–66.

    CAS  Google Scholar 

  191. Zhou, X. F.; Jia, Z. R.; Feng, A. L.; Wang, X. X.; Liu, J. J.; Zhang, M.; Cao, H. J.; Wu, G. L. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 2019, 152, 827–836.

    CAS  Google Scholar 

  192. Wang, S. S.; Zhao, Y.; Gao, M. M.; Xue, H. L.; Xu, Y. C.; Feng, C. H.; Shi, D. X.; Liu, K. H.; Jiao, Q. Z. Green synthesis of porous cocoon-like rGO for enhanced microwave-absorbing performances. ACS Appl. Mater. Interfaces 2018, 10, 42865–42874.

    CAS  Google Scholar 

  193. Li, T.; Zhi, D. D.; Chen, Y.; Li, B.; Zhou, Z. W.; Meng, F. B. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 2020, 13, 477–484.

    CAS  Google Scholar 

  194. Zhang, Z. W.; Cai, Z. H.; **a, L.; Zhao, D.; Fan, F.; Huang, Y. Synergistically assembled cobalt-telluride/graphene foam with high-performance electromagnetic wave absorption in both gigahertz and terahertz band ranges. ACS Appl. Mater. Interfaces 2021, 13, 30967–30979.

    CAS  Google Scholar 

  195. Wang, K. F.; Chu, W. S.; Li, H.; Chen, Y. J.; Cai, Y. L.; Liu, H. Z. Ferromagnetic Ti3CNCl2-decorated RGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. J. Colloid Interface Sci. 2021, 604, 402–414.

    CAS  Google Scholar 

  196. Guo, C.; Itoh, K.; Sun, D. M.; Kondo, Y.; Fuji, M. Carbon nanotube/polysiloxane foams with tunable absorption bands for electromagnetic wave shielding. ACS Appl. Nano Mater. 2020, 3, 5944–5954.

    CAS  Google Scholar 

  197. Aslam, M. A.; Ding, W.; ur Rehman, S.; Hassan, A.; Bian, Y. C.; Liu, Q. C.; Sheng, Z. G. Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance. Appl. Surf. Sci. 2021, 543, 148785.

    CAS  Google Scholar 

  198. Zhang, M.; Ling, H. L.; Wang, T.; Jiang, Y. J.; Song, G. Y.; Zhao, W.; Zhao, L. B.; Cheng, T. T.; **e, Y. X.; Guo, Y. Y. et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 2022, 14, 157.

    CAS  Google Scholar 

  199. **, J. B.; Liu, Y. J.; Wu, Y.; Hu, J. H.; Gao, W. W.; Zhou, E. Z.; Chen, H. H.; Chen, Z. C.; Chen, Y. S.; Gao, C. Multifunctional bicontinuous composite foams with ultralow percolation thresholds. ACS Appl. Mater. Interfaces 2018, 10, 20806–20815.

    CAS  Google Scholar 

  200. Lou, Z. C.; Li, R.; Wang, P.; Zhang, Y.; Chen, B.; Huang, C. X.; Wang, C. C.; Han, H.; Li, Y. J. Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior. Chem. Eng. J. 2020, 391, 123571.

    CAS  Google Scholar 

  201. Jiao, Z. B.; Huyan, W. J.; Yang, F.; Yao, J. R.; Tan, R. Y.; Chen, P.; Tao, X. W.; Yao, Z. J.; Zhou, J. T.; Liu, P. J. Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 2022, 14, 173.

    CAS  Google Scholar 

  202. Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; **ao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

    CAS  Google Scholar 

  203. Huang, Z. Y.; Chen, H. H.; Huang, Y.; Ge, Z.; Zhou, Y.; Yang, Y.; **ao, P. S.; Liang, J. J.; Zhang, T. F.; Shi, Q. et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater. 2018, 28, 1704363.

    Google Scholar 

  204. Chen, H. H.; Huang, Z. Y.; Huang, Y.; Zhang, Y.; Ge, Z.; Ma, W. L.; Zhang, T. F.; Wu, M. M.; Xu, S. T.; Fan, F. et al. Consecutively strong absorption from gigahertz to terahertz bands of a monolithic three-dimensional Fe3O4/graphene material. ACS Appl. Mater. Interfaces 2019, 11, 1274–1282.

    CAS  Google Scholar 

  205. Yang, X.; Duan, Y. P.; Li, S. Q.; Huang, L. X.; Pang, H. F.; Ma, B.; Wang, T. M. Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance. Carbon 2022, 188, 376–384.

    CAS  Google Scholar 

  206. Wang, Y. Y.; Sun, W. J.; Dai, K.; Yan, D. X.; Li, Z. M. Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption. Compos. Sci. Technol. 2021, 212, 108848.

    CAS  Google Scholar 

  207. Wu, F.; Li, Y.; Lan, X. Q.; Huang, P. K.; Chong, Y. K.; Luo, H. B.; Shen, B.; Zheng, W. G. Large-scale fabrication of lightweight, tough polypropylene/carbon black composite foams as broadband microwave absorbers. Compos. Commun. 2020, 20, 100358.

    Google Scholar 

  208. Li, W. C.; Li, C. S.; Lin, L. H.; Wang, Y.; Zhang, J. S. All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material. J. Alloys Compd. 2019, 781, 883–891.

    CAS  Google Scholar 

  209. Li, X. M.; Zhou, G. Y.; Yang, Q.; Zhu, X. T.; Ren, G. N.; Liu, L. Preparation and performance of electromagnetic wave absorbing foamed ceramics with high closed porosity and gradient SiC distribution. Ceram. Int. 2020, 46, 2294–2299.

    CAS  Google Scholar 

  210. Li, W. C.; Lin, L. H.; Li, C. S.; Wang, Y.; Zhang, J. S. Radar absorbing combinatorial metamaterial based on silicon carbide/carbon foam material embedded with split square ring metal. Results Phys. 2019, 12, 278–286.

    Google Scholar 

  211. Qin, M.; Zhang, L. M.; Zhao, X. R.; Wu, H. J. Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 2021, 31, 2103436.

    CAS  Google Scholar 

  212. Sun, H. D.; Zhang, Y.; Wu, Y.; Zhao, Y.; Zhou, M.; Liu, L.; Tang, S. L.; Ji, G. B. Broadband absorption of macro pyramid structure based flame retardant absorbers. J. Mater. Sci. Technol. 2022, 128, 228–238.

    CAS  Google Scholar 

  213. Huang, Q. Q.; Wang, G. H.; Zhou, M.; Zheng, J.; Tang, S. L.; Ji, G. B. Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture. J. Mater. Sci. Technol. 2022, 108, 90–101.

    CAS  Google Scholar 

  214. Zhang, H. T.; Zhang, J. S.; Zhang, H. Y. Computation of radar absorbing silicon carbide foams and their silica matrix composites. Comput. Mater. Sci. 2007, 38, 857–864.

    Google Scholar 

  215. Liu, Q. L.; Cao, B.; Feng, C. L.; Zhang, W.; Zhu, S. M.; Zhang, D. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles. Compos. Sci. Technol. 2012, 72, 1632–1636.

    CAS  Google Scholar 

  216. Liu, Y.; He, D. L.; Dubrunfaut, O.; Zhang, A. N.; Zhang, H. L.; Pichon, L.; Bai, J. B. GO-CNTs hybrids reinforced epoxy composites with porous structure as microwave absorbers. Compos. Sci. Technol. 2020, 200, 108450.

    CAS  Google Scholar 

  217. Yang, X. C.; **g, M. X.; Shen, X. Q.; Meng, X. F.; Dong, M. D.; Huang, D. Q.; Wang, Y. D. Microwave absorption of sandwich structure based on nanocrystalline SrFe12O19, Ni0.5Zn0.5Fe2O4 and α-Fe hollow microfibers. J. Nanosci. Nanotechnol. 2014, 14, 2419–2424.

    CAS  Google Scholar 

  218. Choi, J.; Jung, H. T. A new triple-layered composite for high-performance broadband microwave absorption. Compos. Struct. 2015, 122, 166–171.

    Google Scholar 

  219. Wang, T.; Wang, P.; Wang, Y.; Qiao, L. A broadband far-field microwave absorber with a sandwich structure. Mater. Des. 2016, 95, 486–489.

    CAS  Google Scholar 

  220. Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

    CAS  Google Scholar 

  221. Jeong, H.; Le, D. H.; Lim, D.; Phon, R.; Lim, S. Reconfigurable metasurfaces for frequency selective absorption. Adv. Opt. Mater. 2020, 8, 1902182.

    CAS  Google Scholar 

  222. Li, W.; Wu, T. L.; Wang, W.; Zhai, P. C.; Guan, J. G. Broadband patterned magnetic microwave absorber. J. Appl. Phys. 2014, 116, 044110.

    Google Scholar 

  223. Tong, X. C. Functional Metamaterials and Metadevices; Springer: Cham, 2018.

    Google Scholar 

  224. Li, W. W.; Xu, M. Z.; Xu, H. X.; Wang, X. W.; Huang, W. Metamaterial absorbers: From tunable surface to structural transformation. Adv. Mater. 2022, 34, 2202509.

    CAS  Google Scholar 

  225. Yu, P.; Besteiro, L. V.; Huang, Y. J.; Wu, J.; Fu, L.; Tan, H. H.; Jagadish, C.; Wiederrecht, G. P.; Govorov, A. O.; Wang, Z. M. Broadband metamaterial absorbers. Adv. Opt. Mater. 2019, 7, 1800995.

    Google Scholar 

  226. Hannan, S.; Islam, M. T.; Soliman, M. S.; Mohd Sahar, N. B.; Jit Singh, M. S.; Faruque, M. R. I.; Alzamil, A. A Filling-factor engineered, perfect metamaterial absorber for multiple applications at frequencies set by IEEE in C and X bands. J. Mater. Res. Technol. 2022, 19, 934–946.

    CAS  Google Scholar 

  227. Zhang, C.; Cheng, Q.; Yang, J.; Zhao, J.; Cui, T. J. Broadband metamaterial for optical transparency and microwave absorption. Appl. Phys. Lett. 2017, 110, 143511.

    Google Scholar 

  228. Pang, Y. Q.; Wang, J. F.; Cheng, Q.; **a, S.; Zhou, X. Y.; Xu, Z.; Cui, T. J.; Qu, S. B. Thermally tunable water-substrate broadband metamaterial absorbers. Appl. Phys. Lett. 2017, 110, 104103.

    Google Scholar 

  229. Sun, L. K.; Cheng, H. F.; Zhou, Y. J.; Wang, J. Design of a lightweight magnetic radar absorber embedded with resistive FSS. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 675–677.

    Google Scholar 

  230. Winson, D.; Choudhury, B.; Selvakumar, N.; Barshilia, H.; Nair, R. U. Design and development of a hybrid broadband radar absorber using metamaterial and graphene. IEEE Trans. Antennas Propag. 2019, 67, 5446–5452.

    Google Scholar 

  231. Panwar, R.; Lee, J. R. Progress in frequency selective surface-based smart electromagnetic structures: A critical review. Aerosp. Sci. Technol. 2017, 66, 216–234.

    Google Scholar 

  232. Costa, F.; Monorchio, A. A frequency selective radome with wideband absorbing properties. IEEE Trans. Antennas Propag. 2012, 60, 2740–2747.

    Google Scholar 

  233. Li, W. W.; Chen, M. J.; Zeng, Z. H.; **, H.; Pei, Y. M.; Zhang, Z. Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization. Compos. Sci. Technol. 2017, 145, 10–14.

    CAS  Google Scholar 

  234. Zhang, Z.; Wang, C. X.; Yang, H. Y.; Wang, P. D.; Chen, M. J.; Lei, H. S.; Fang, D. N. Broadband radar absorbing composites: Spatial scale effect and environmental adaptability. Compos. Sci. Technol. 2020, 197, 108262.

    CAS  Google Scholar 

  235. Shen, Y.; Zhang, J. Q.; Meng, Y. Y.; Wang, Z. L.; Pang, Y. Q.; Wang, J. F.; Ma, H.; Qu, S. B. Merging absorption bands of plasmonic structures via dispersion engineering. Appl. Phys. Lett. 2018, 112, 254103.

    Google Scholar 

  236. Tao, J. Q.; Xu, L. L.; Pei, C. B.; Gu, Y. S.; He, Y. R.; Zhang, X. F.; Tao, X. W.; Zhou, J. T.; Yao, Z. J.; Tao, S. F. et al. Catfish effect induced by anion sequential do** for microwave absorption. Adv. Funct. Mater. 2023, 33, 2211996.

    CAS  Google Scholar 

  237. Zhou, Q.; Yin, X. W.; Ye, F.; Liu, X. F.; Cheng, L. F.; Zhang, L. T. A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption. Mater. Des. 2017, 123, 46–53.

    CAS  Google Scholar 

  238. Zhang, C.; Yin, S.; Long, C.; Dong, B. W.; He, D. P.; Cheng, Q. Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Opt. Express 2021, 29, 14078–14086.

    CAS  Google Scholar 

  239. Zhang, K. L.; Zhang, J. Y.; Hou, Z. L.; Bi, S.; Zhao, Q. L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617.

    CAS  Google Scholar 

  240. Huang, Y. X.; Song, W. L.; Wang, C. X.; Xu, Y. N.; Wei, W. Y.; Chen, M. J.; Tang, L. Q.; Fang, D. N. Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos. Sci. Technol. 2018, 162, 206–214.

    CAS  Google Scholar 

  241. Zhou, Q.; Shi, T. T.; Xue, B.; Gu, S. Y.; Ren, W.; Ye, F.; Fan, X. M.; Du, L. F. Multi-scale integrated design and fabrication of ultra-broadband electromagnetic absorption utilizing multi-walled carbon nanotubes-based hierarchical metamaterial. Compos. Sci. Technol. 2023, 232, 109877.

    CAS  Google Scholar 

  242. Duan, Y. B.; Liang, Q. X.; Yang, Z.; Li, Z. H.; Yin, H. Y.; Cao, Y.; Li, D. C. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology. Mater. Des. 2021, 208, 109900.

    Google Scholar 

  243. Wang, T. T.; Lu, X. F.; Wang, A. A review: 3D printing of microwave absorption ceramics. Int. J. Appl. Ceram. Technol. 2020, 17, 2477–2491.

    CAS  Google Scholar 

  244. Zhou, R.; Wang, Y. S.; Liu, Z. Y.; Pang, Y. Q.; Chen, J. X.; Kong, J. Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 122.

    CAS  Google Scholar 

  245. Wang, J. Q.; Wu, Z.; **ng, Y. Q.; Li, B. J.; Huang, P.; Liu, L. Multi-scale design of ultra-broadband microwave metamaterial absorber based on hollow carbon/MXene/Mo2C microtube. Small, in press, https://doi.org/10.1002/smll.202207051.

  246. Yang, R. B.; Yang, J. J.; Lo, S. T. Wideband square spiral metamaterial absorbers based on flaky carbonyl iron/epoxy composites. AIP Adv. 2020, 10, 015141.

    CAS  Google Scholar 

  247. Li, W.; Wu, T. L.; Wang, W.; Guan, J. G.; Zhai, P. C. Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers. Appl. Phys. Lett. 2014, 104, 022903.

    Google Scholar 

  248. Shen, Y.; Zhang, J. Q.; Wang, W. J.; Pang, Y. Q.; Wang, J. F.; Ma, H.; Qu, S. B. Integrating absorber with non-planar plasmonic structure for k-vector matching absorption enhancement. J. Appl. Phys. 2018, 124, 225101.

    Google Scholar 

  249. Liu, Y.; Zhao, K.; Drew, M. G. B.; Liu, Y. A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials. AIP Adv. 2018, 8, 015223.

    Google Scholar 

  250. Liu, Y.; Lin, Y. R.; Zhao, K.; Drew, M. G. B.; Liu, Y. Microwave absorption properties of Ag/NiFe2−xCexO4 characterized by an alternative procedure rather than the main stream method using “reflection loss”. Mater. Chem. Phys. 2020, 243, 122615.

    CAS  Google Scholar 

  251. **e, P. T.; Li, H. Y.; He, B.; Dang, F.; Lin, J.; Fan, R. H.; Hou, C. X.; Liu, H.; Zhang, J. X.; Ma, Y. et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 2018, 6, 8812–8822.

    CAS  Google Scholar 

  252. Nan, C. W.; Shen, Y.; Ma, J. Physical properties of composites near percolation. Annu. Rev. Mater. Res. 2010, 40, 131–151.

    CAS  Google Scholar 

  253. Lv, H. L.; Guo, Y. H.; Wu, G. L.; Ji, G. B.; Zhao, Y.; Xu, Z. J. Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 2017, 9, 5660–5668.

    CAS  Google Scholar 

  254. Quan, B.; Liang, X. H.; Ji, G. B.; Cheng, Y.; Liu, W.; Ma, J. N.; Zhang, Y. N.; Li, D. R.; Xu, G. Y. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd. 2017, 728, 1065–1075.

    CAS  Google Scholar 

  255. Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    CAS  Google Scholar 

  256. Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.

    CAS  Google Scholar 

  257. Green, M.; Liu, Z.; **ang, P.; Tan, X.; Huang, F.; Liu, L.; Chen, X. Ferric metal-organic framework for microwave absorption. Mater. Today Chem. 2018, 9, 140–148.

    CAS  Google Scholar 

  258. Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

    Google Scholar 

  259. Jia, Z. R.; Lan, D.; Lin, K. J.; Qin, M.; Kou, K. C.; Wu, G. L.; Wu, H. J. Progress in low-frequency microwave absorbing materials. J. Mater. Sci.: Mater. Electron. 2018, 29, 17122–17136.

    CAS  Google Scholar 

  260. Duan, B. F.; Zhang, J. M.; Wang, G. W.; Wang, P.; Wang, D.; Qiao, L.; Wang, T.; Li, F. S. Microwave absorption properties of easy-plane anisotropy Fe-Si powders with surface modification in the frequency range of 0.1–4 GHz. J. Mater. Sci.: Mater. Electron. 2019, 30, 13810–13819.

    CAS  Google Scholar 

  261. Pang, H.; Duan, Y.; Gao, M.; Huang, L.; Liu, X.; Li, Z. Electromagnetic wave absorption performance of FeCoNiMn0.5Al0.2 high entropy alloys governed by nanocrystal evolution. Mater. Today Nano 2022, 20, 100243.

    CAS  Google Scholar 

  262. Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Su, K. H.; Zhang, Q. Y. Well-defined core-shell Fe3O4@polypyrrole composite microspheres with tunable shell thickness: Synthesis and their superior microwave absorption performance in the Ku band. Ind. Eng. Chem. Res. 2016, 55, 6263–6275.

    CAS  Google Scholar 

  263. Chen, Z. M.; Zhang, Y.; Wang, Z. D.; Wu, Y.; Zhao, Y.; Liu, L.; Ji, G. B. Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on the graphite powder. Carbon 2023, 201, 542–548.

    CAS  Google Scholar 

  264. Green, M.; Van Tran, A. T.; Chen, X. B. Obtaining strong, broadband microwave absorption of polyaniline through data-driven materials discovery. Adv. Mater. Interfaces 2020, 7, 2000658.

    CAS  Google Scholar 

  265. Green, M.; Van Tran, A. T.; Chen, X. B. Maximizing the microwave absorption performance of polypyrrole by data-driven discovery. Compos. Sci. Technol. 2020, 199, 108332.

    CAS  Google Scholar 

  266. Green, M.; Van Tran, A. T.; Chen, X. B. Realizing maximum microwave absorption of poly(3, 4-ethylenedioxythiophene) with a data-driven method. ACS Appl. Electron. Mater. 2020, 2, 2937–2944.

    CAS  Google Scholar 

  267. Xu, X. Q.; Ran, F. T.; Fan, Z. M.; Cheng, Z. J.; **e, Z. M.; Lv, T.; Liu, Y. Y. Microstructural engineering of flexible and broadband microwave absorption films with hierarchical superstructures derived from bimetallic metal-organic framework. Carbon 2021, 178, 320–331.

    CAS  Google Scholar 

  268. Lv, H. L.; Yang, Z. H.; Xu, H. B.; Wang, L. Y.; Wu, R. B. An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 2020, 30, 1907251.

    CAS  Google Scholar 

  269. Cheng, Y.; Seow, J. Z. Y.; Zhao, H. Q.; Xu, Z. J.; Ji, G. B. A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 2020, 12, 125.

    CAS  Google Scholar 

  270. Chambers, B. A smart radar absorber. Smart Mater. Struct. 1999, 8, 64–72.

    Google Scholar 

  271. Llorente-Romano, S.; Garca-Lampérez, A.; Sarkar, T. K.; Salazar-Palma, M. An exposition on the choice of the proper S parameters in characterizing devices including transmission lines with complex reference impedances and a general methodology for computing them. IEEE Antennas Propag. Mag. 2013, 55, 94–112.

    Google Scholar 

  272. Momeni-Nasab, M.; Bidoki, S. M.; Hadizadeh, M.; Movahhedi, M. Fabrication of electromagnetic waves absorbing material by ink-jet printing method. J. Mater. Sci.: Mater. Electron. 2020, 31, 7093–7099.

    CAS  Google Scholar 

  273. Wang, T.; Han, R.; Tan, G. G.; Wei, J. Q.; Qiao, L.; Li, F. S. Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. J. Appl. Phys. 2012, 112, 104903.

    Google Scholar 

  274. Spain, E.; Venkatanarayanan, A. Review of physical principles of sensing and types of sensing materials. Compr. Mater. Process. 2014, 13, 5–46.

    Google Scholar 

  275. Wang, H.; Yang, L.; Zhang, X. N.; Ang, M. H. Permittivity, loss factor and Cole–Cole model of acrylic materials for dielectric elastomers. Results Phys. 2021, 29, 104781.

    Google Scholar 

  276. Ji, J. D.; Huang, Y.; Yin, J. H.; Zhao, X. C.; Cheng, X. W.; He, S. L.; Li, X.; He, J.; Liu, J. P. Synthesis and electromagnetic and microwave absorption properties of monodispersive Fe3O4/α-Fe2O3 composites. ACS Appl. Nano Mater. 2018, 1, 3935–3944.

    CAS  Google Scholar 

  277. Aharoni, A. Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 1991, 69, 7762–7764.

    Google Scholar 

  278. Wang, H.; Dai, Y. Y.; Gong, W. J.; Geng, D. Y.; Ma, S.; Li, D.; Liu, W.; Zhang, Z. D. Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances. Appl. Phys. Lett. 2013, 102, 223113.

    Google Scholar 

  279. Xue, J. M.; Yin, X. W.; Ye, F.; Zhang, L. T.; Cheng, L. F. Theoretical prediction and experimental verification on EMI shielding effectiveness of dielectric composites using complex permittivity. Ceram. Int. 2017, 43, 16736–16743.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21771151 and 21931009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, S., Zhang, M., Jiang, Z. et al. Advances in microwave absorbing materials with broad-bandwidth response. Nano Res. 16, 11054–11083 (2023). https://doi.org/10.1007/s12274-023-5654-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5654-6

Keywords

Navigation