Log in

Self-assembly of DNA molecules at bio-interfaces and their emerging applications for biomedicines

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Interfacial assembly has been intensively investigated in fabricating biomaterials and nanodevices for various applications. Recently, due to the precise sequence programmability, unique molecular recognition ability, and good biocompatibility, deoxyribonucleic acid (DNA) has been explored as superior building blocks to assemble at bio-interface for manipulating biological entities. To the best of our knowledge, the advances in this area have not been systematically summarized. To provide an overview of the area, in this review, the recently developed DNA assembly strategies on bio-interfaces were well summarized, and their representative works are exampled to illustrate how to rationally and elaborately design DNA molecules to realize functional integration and emerging of novel biological functionalities with high controllability and programmability. Furthermore, the biomedical applications of DNA assembly at bio-interface are categorially elaborated. The fascinating and unique advantages of DNA assembly systems are fully discussed in the exemplified applications to show the distinguished perspective of DNA in the future development. At the end of this review, the current limitations and challenges in applications and potential improvement strategies for DNA assembly at bio-interface are fully discussed. The future development direction is deliberated. We envision that this review will help scientists in the interdisciplinary fields gain a more comprehensive understanding of the DNA assembly at bio-interface, and therefore jointly promote the advances in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kao, J.; Thorkelsson, K.; Bai, P.; Rancatore, B. J.; Xu, T. Toward functional nanocomposites: Taking the best of nanoparticles, polymers, and small molecules. Chem. Soc. Rev. 2013, 42, 2654–2678.

    CAS  Google Scholar 

  2. Ma, Q. M.; Song, Y.; Sun, W. T.; Cao, J.; Yuan, H.; Wang, X. Y.; Sun, Y.; Shum, H. C. Cell-inspired all-aqueous microfluidics: From intracellular liquid–liquid phase separation toward advanced biomaterials. Adv. Sci. 2020, 7, 1903359.

    CAS  Google Scholar 

  3. Stein, A.; Wilson, B. E.; Rudisill, S. G. Design and functionality of colloidal-crystal-templated materials—Chemical applications of inverse opals. Chem. Soc. Rev. 2013, 42, 2763–2803.

    CAS  Google Scholar 

  4. Qin, L.; Duan, P. F.; Liu, M. H. Interfacial assembly and host–guest interaction of anthracene-conjugated L-glutamate dendron with cyclodextrin at the air/water interface. Chin. Chem. Lett. 2014, 25, 487–490.

    CAS  Google Scholar 

  5. Yang, H.; Yuan, B.; Zhang, X.; Scherman, O. A. Supramolecular chemistry at interfaces: Host–guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47, 2106–2115.

    CAS  Google Scholar 

  6. Jiang, Y. F.; Löbling, T. I.; Huang, C. L.; Sun, Z. W.; Müller, A. H. E.; Russell, T. P. Interfacial assembly and jamming behavior of polymeric janus particles at liquid interfaces. ACS Appl. Mater. Interfaces 2017, 9, 33327–33332.

    CAS  Google Scholar 

  7. Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 2002, 298, 1006–1009.

    CAS  Google Scholar 

  8. Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Nanoparticle assembly and transport at liquid–liquid interfaces. Science 2003, 299, 226–229.

    CAS  Google Scholar 

  9. Yang, P.; Li, Y. Y.; Mason, S. D.; Chen, F. F.; Chen, J. B.; Zhou, R. X.; Liu, J. W.; Hou, X. D.; Li, F. Concentric DNA amplifier that streamlines in-solution biorecognition and on-particle biocatalysis. Anal. Chem. 2020, 92, 3220–3227.

    CAS  Google Scholar 

  10. Jeon, I.; Peeks, M. D.; Savagatrup, S.; Zeininger, L.; Chang, S.; Thomas, G.; Wang, W.; Swager, T. M. Janus graphene: Scalable self-assembly and solution-phase orthogonal functionalization. Adv. Mater. 2019, 31, 1900438.

    Google Scholar 

  11. Tian, R. R.; Hu, G. R.; Ou, X. W.; Luo, M. B.; Li, J. Y. Dynamic behaviors of interfacial water on the self-assembly monolayer (SAM) heterogeneous surface. J. Chem. Phys. 2020, 153, 124705.

    CAS  Google Scholar 

  12. **, H. J.; **e, M. Q.; Wang, W. K.; Jiang, L. X.; Chang, W. Y.; Sun, Y.; Xu, L. M.; Zang, S. H.; Huang, J. B.; Yan, Y. et al. Pressing-induced caking: A general strategy to scale-span molecular self-assembly. CCS Chem. 2020, 2, 98–106.

    CAS  Google Scholar 

  13. Yao, C.; Ou, J. H.; Tang, J. P.; Yang, D. Y. DNA supramolecular assembly on micro/nanointerfaces for bioanalysis. Acc. Chem. Res. 2022, 55, 2043–2054.

    CAS  Google Scholar 

  14. Li, J.; Mo, L. T.; Lu, C. H.; Fu, T.; Yang, H. H.; Tan, W. H. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev. 2016, 45, 1410–1431.

    CAS  Google Scholar 

  15. Li, J. W.; Li, Y.; Chan, C. Y. K.; Kwok, R. T. K.; Li, H. K.; Zrazhevskiy, P.; Gao, X. H.; Sun, J. Z.; Qin, A. J.; Tang, B. Z. An aggregation-induced-emission platform for direct visualization of interfacial dynamic self-assembly. Angew. Chem., Int. Ed. 2014, 53, 13518–13522.

    CAS  Google Scholar 

  16. Liu, Z.; Lei, S.; Zou, L. N.; Li, G. P.; Xu, L. L.; Ye, B. X. Highly ordered 3D electrochemical DNA biosensor based on dual orientation controlled rolling motor and graftable tetrahedron DNA. Biosens. Bioelectron. 2020, 147, 111759.

    CAS  Google Scholar 

  17. Kahn, J. S.; Gang, O. Designer nanomaterials through programmable assembly. Angew. Chem., Int. Ed. 2022, 61, e202105678.

    CAS  Google Scholar 

  18. Franklin, R. E.; Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 1953, 171, 740–741.

    CAS  Google Scholar 

  19. Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F. Assembling materials with DNA as the guide. Science 2008, 321, 1795–1799.

    CAS  Google Scholar 

  20. Schneider, A. K.; Niemeyer, C. M. DNA surface technology: From gene sensors to integrated systems for life and materials sciences. Angew. Chem., Int. Ed. 2018, 57, 16959–16967.

    CAS  Google Scholar 

  21. Li, F.; Tang, J. P.; Geng, J. H.; Luo, D.; Yang, D. Y. Polymeric DNA hydrogel: Design, synthesis and applications. Prog. Polym. Sci. 2019, 98, 101163.

    CAS  Google Scholar 

  22. Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Structural DNA nanotechnology: State of the art and future perspective. J. Am. Chem. Soc. 2014, 136, 11198–11211.

    CAS  Google Scholar 

  23. Custódio, C. A.; Mano, J. F. Cell surface engineering to control cellular interactions. ChemNanoMat 2016, 2, 376–384.

    Google Scholar 

  24. Li, L. X.; Liu, S.; Zhang, C. J.; Guo, Z. Z.; Shao, S. X.; Deng, X. D.; Liu, Q. L. Recent advances in DNA-based cell surface engineering for biological applications. Chem.—Eur. J. 2022, 28, e202202070.

    CAS  Google Scholar 

  25. Shi, P.; Wang, Y. Synthetic DNA for cell-surface engineering. Angew. Chem., Int. Ed. 2021, 60, 11580–11591.

    CAS  Google Scholar 

  26. Yang, W.; Liu, X. C.; Li, H. F.; Zhou, J.; Chen, S.; Wang, P. F.; Li, J.; Yang, H. H. Disulfide-containing molecular sticker assists cellular delivery of DNA nanoassemblies by bypassing endocytosis. CCS Chem. 2021, 3, 1178–1186.

    CAS  Google Scholar 

  27. Hu, Y. W.; Cecconello, A.; Idili, A.; Ricci, F.; Willner, I. Triplex DNA nanostructures: From basic properties to applications. Angew. Chem., Int. Ed. 2017, 56, 15210–15233.

    CAS  Google Scholar 

  28. Li, J.; Green, A. A.; Yan, H.; Fan, C. H. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 2017, 9, 1056–1067.

    CAS  Google Scholar 

  29. Kohman, R. E.; Kunjapur, A. M.; Hysolli, E.; Wang, Y.; Church, G. M. From designing the molecules of life to designing life: Future applications derived from advances in DNA technologies. Angew. Chem., Int. Ed. 2018, 57, 4313–4328.

    CAS  Google Scholar 

  30. Chandra, R. A.; Douglas, E. S.; Mathies, R. A.; Bertozzi, C. R.; Francis, M. B. Programmable cell adhesion encoded by DNA hybridization. Angew. Chem., Int. Ed. 2006, 45, 896–901.

    CAS  Google Scholar 

  31. Borisenko, G. G.; Zaitseva, M. A.; Chuvilin, A. N.; Pozmogova, G. E. DNA modification of live cell surface. Nucleic Acids Res. 2009, 37, e28.

  32. Hsiao, S. C.; Shum, B. J.; Onoe, H.; Douglas, E. S.; Gartner, Z. J.; Mathies, R. A.; Bertozzi, C. R.; Francis, M. B. Direct cell surface modification with DNA for the capture of primary cells and the investigation of myotube formation on defined patterns. Langmuir 2009, 25, 6985–6991.

    CAS  Google Scholar 

  33. Liu, X. W.; Yan, H.; Liu, Y.; Chang, Y. Targeted cell–cell interactions by DNA nanoscaffold-templated multivalent bispecific aptamers. Small 2011, 7, 1673–1682.

    CAS  Google Scholar 

  34. Selden, N. S.; Todhunter, M. E.; Jee, N. Y.; Liu, J. S.; Broaders, K. E.; Gartner, Z. J. Chemically programmed cell adhesion with membrane-anchored oligonucleotides. J. Am. Chem. Soc. 2012, 134, 765–768.

    CAS  Google Scholar 

  35. You, M. X.; Zhu, G. Z.; Chen, T.; Donovan, M. J.; Tan, W. H. Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy. J. Am. Chem. Soc. 2015, 137, 667–674.

    CAS  Google Scholar 

  36. Song, P.; Ye, D. K.; Zuo, X. L.; Li, J.; Wang, J. B.; Liu, H. J.; Hwang, M. T.; Chao, J.; Su, S.; Wang, L. H. et al. DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis. Nano Lett. 2017, 17, 5193–5198.

    CAS  Google Scholar 

  37. Shi, P.; Zhao, N.; Lai, J. P.; Coyne, J.; Gaddes, E. R.; Wang, Y. Polyvalent display of biomolecules on live cells. Angew. Chem., Int. Ed. 2018, 57, 6800–6804.

    CAS  Google Scholar 

  38. Chang, X.; Zhang, C.; Lv, C.; Sun, Y.; Zhang, M. Z.; Zhao, Y. M.; Yang, L. L.; Han, D.; Tan, W. H. Construction of a multiple-aptamer-based DNA logic device on live cell membranes via associative toehold activation for accurate cancer cell identification. J. Am. Chem. Soc. 2019, 141, 12738–12743.

    CAS  Google Scholar 

  39. Shi, P.; Wang, X. L.; Davis, B.; Coyne, J.; Dong, C.; Reynolds, J.; Wang, Y. In situ synthesis of an aptamer-based polyvalent antibody mimic on the cell surface for enhanced interactions between immune and cancer cells. Angew. Chem., Int. Ed. 2020, 59, 11892–11897.

    CAS  Google Scholar 

  40. Yao, C.; Tang, H.; Wu, W. J.; Tang, J. P.; Guo, W. W.; Luo, D.; Yang, D. Y. Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J. Am. Chem. Soc. 2020, 142, 3422–3429.

    CAS  Google Scholar 

  41. Lu, Z. W.; Shi, Y.; Ma, Y. X.; Jia, B.; Li, X. T.; Guan, X. X.; Li, Z. Fast and specific enrichment and quantification of cancer-related exosomes by DNA-nanoweight-assisted centrifugation. Anal. Chem. 2022, 94, 9466–9471.

    CAS  Google Scholar 

  42. Wang, H. Z.; Zeng, J. H.; Huang, J.; Cheng, H.; Chen, B.; Hu, X.; He, X. X.; Zhou, Y.; Wang, K. M. A self-serviced-track 3D DNA walker for ultrasensitive detection of tumor exosomes by glycoprotein profiling. Angew. Chem., Int. Ed. 2022, 61, e202116932.

    CAS  Google Scholar 

  43. Li, F.; Liu, Y. J.; Dong, Y. H.; Chu, Y. W.; Song, N. C.; Yang, D. Y. Dynamic assembly of DNA nanostructures in living cells for mitochondrial interference. J. Am. Chem. Soc. 2022, 144, 4667–4677.

    CAS  Google Scholar 

  44. Gao, F.; Yang, D. L.; Xu, F.; Ma, X. W.; Wang, P. F. Promoting cell fusion by polyvalent DNA ligands. Nano Lett. 2022, 22, 3018–3025.

    CAS  Google Scholar 

  45. Yang, X. Q.; Yang, L. J.; Yang, D. L.; Li, M.; Wang, P. F. In situ DNA self-assembly on the cell surface drives unidirectional clustering of membrane proteins for the modulation of cell behaviors. Nano Lett. 2022, 22, 3410–3416.

    CAS  Google Scholar 

  46. Mager, M. D.; LaPointe, V.; Stevens, M. M. Exploring and exploiting chemistry at the cell surface. Nat. Chem. 2011, 3, 582–589.

    CAS  Google Scholar 

  47. Vogel, K.; Glettenberg, M.; Schroeder, H.; Niemeyer, C. M. DNA-modification of eukaryotic cells. Small 2013, 9, 255–262.

    CAS  Google Scholar 

  48. Charter, N. W.; Mahal, L. K.; Koshland, D. E.; Bertozzi, C. R. Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior. J. Biol. Chem. 2002, 277, 9255–9261.

    CAS  Google Scholar 

  49. Zhao, W. A.; Loh, W.; Drou**ine, I. A.; Teo, W.; Kumar, N.; Schafer, S.; Cui, C. H.; Zhang, L.; Sarkar, D.; Karnik, R. et al. Mimicking the inflammatory cell adhesion cascade by nucleic acid aptamer programmed cell–cell interactions. FASEB J. 2011, 25, 3045–3056.

    CAS  Google Scholar 

  50. Cui, C.; Zhang, H.; Wang, R. W.; Cansiz, S.; Pan, X. S.; Wan, S.; Hou, W. J.; Li, L.; Chen, M. W.; Liu, Y. et al. Recognition-then-reaction enables site-selective bioconjugation to proteins on live-cell surfaces. Angew. Chem., Int. Ed. 2017, 56, 11954–11957.

    CAS  Google Scholar 

  51. Liu, H.; Yang, Q. X.; Peng, R. Z.; Kuai, H. L.; Lyu, Y.; Pan, X. S.; Liu, Q. L.; Tan, W. H. Artificial signal feedback network mimicking cellular adaptivity. J. Am. Chem. Soc. 2019, 141, 6458–6461.

    CAS  Google Scholar 

  52. Ge, Z. L.; Liu, J. B.; Guo, L. J.; Yao, G. B.; Li, Q.; Wang, L. H.; Li, J.; Fan, C. H. Programming cell–cell communications with engineered cell origami clusters. J. Am. Chem. Soc. 2020, 142, 8800–8808.

    Google Scholar 

  53. Wan, S.; Zhang, L. Q.; Wang, S.; Liu, Y.; Wu, C. C.; Cui, C.; Sun, H.; Shi, M. L.; Jiang, Y.; Li, L. et al. Molecular recognition-based DNA nanoassemblies on the surfaces of nanosized exosomes. J. Am. Chem. Soc. 2017, 139, 5289–5292.

    CAS  Google Scholar 

  54. Shi, P.; Zhao, N.; Coyne, J.; Wang, Y. DNA-templated synthesis of biomimetic cell wall for nanoencapsulation and protection of mammalian cells. Nat. Commun. 2019, 10, 2223.

    Google Scholar 

  55. Kacherovsky, N.; Cardle, I. I.; Cheng, E. L.; Yu, J. L.; Baldwin, M. L.; Salipante, S. J.; Jensen, M. C.; Pun, S. H. Traceless aptamer-mediated isolation of CD8+ T cells for chimeric antigen receptor T-cell therapy. Nat. Biomed. Eng. 2019, 3, 783–795.

    CAS  Google Scholar 

  56. Kumar, R. S.; Arunachalam, S.; Periasamy, V. S.; Preethy, C. P.; Riyasdeen, A.; Akbarsha, M. A. Surfactant-cobalt(III) complexes: Synthesis, critical micelle concentration (CMC) determination, DNA binding, antimicrobial and cytotoxicity studies. J. Inorg. Biochem. 2009, 103, 117–127.

    CAS  Google Scholar 

  57. Sefah, K.; Shangguan, D. H.; **ong, X. L.; O’Donoghue, M. B.; Tan, W. H. Development of DNA aptamers using cell-SELEX. Nat. Protoc. 2010, 5, 1169–1185.

    CAS  Google Scholar 

  58. Alam, K. K.; Chang, J. L.; Burke, D. H. FASTAptamer: A bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections. Mol. Ther. Nucleic Acids 2015, 4, e230.

    CAS  Google Scholar 

  59. Soontornworajit, B.; Zhou, J.; Shaw, M. T.; Fan, T. H.; Wang, Y. Hydrogel functionalization with DNA aptamers for sustained PDGF-BB release. Chem. Commun. 2010, 46, 1857–1859.

    CAS  Google Scholar 

  60. Liu, C.; Han, J. L.; Pei, Y. X.; Du, J. Aptamer functionalized DNA hydrogel for wise-stage controlled protein release. Appl. Sci. 2018, 8, 1941.

    Google Scholar 

  61. Peng, R. Z.; Zheng, X. F.; Lyu, Y. F.; Xu, L. J.; Zhang, X. B.; Ke, G. L.; Liu, Q. L.; You, C. J.; Huan, S. Y.; Tan, W. H. Engineering a 3D DNA-logic gate nanomachine for bispecific recognition and computing on target cell surfaces. J. Am. Chem. Soc. 2018, 140, 9793–9796.

    CAS  Google Scholar 

  62. Wu, L. L.; Wang, Y. D.; Xu, X.; Liu, Y. L.; Lin, B. Q.; Zhang, M. X.; Zhang, J. L.; Wan, S.; Yang, C. Y.; Tan, W. H. Aptamer-based detection of circulating targets for precision medicine. Chem. Rev. 2021, 121, 12035–12105.

    CAS  Google Scholar 

  63. Li, M.; Ding, H. M.; Lin, M. H.; Yin, F. F.; Song, L.; Mao, X. H.; Li, F.; Ge, Z. L.; Wang, L. H.; Zuo, X. L. et al. DNA framework-programmed cell capture via topology-engineered receptor–ligand interactions. J. Am. Chem. Soc. 2019, 141, 18910–18915.

    CAS  Google Scholar 

  64. Yao, C.; Zhu, C. X.; Tang, J. P.; Ou, J. H.; Zhang, R.; Yang, D. Y. T lymphocyte-captured DNA network for localized immunotherapy. J. Am. Chem. Soc. 2021, 143, 19330–19340.

    CAS  Google Scholar 

  65. Pantel, K.; Alix-Panabières, C. Circulating tumour cells in cancer patients: Challenges and perspectives. Trends Mol. Med. 2010, 16, 398–406.

    Google Scholar 

  66. Stappenbeck, T. S.; Miyoshi, H. The role of stromal stem cells in tissue regeneration and wound repair. Science 2009, 324, 1666–1669.

    CAS  Google Scholar 

  67. Finke, A.; Schneider, A. K.; Spreng, A. S.; Leist, M.; Niemeyer, C. M.; Marx, A. Functionalized DNA hydrogels produced by polymerase-catalyzed incorporation of non-natural nucleotides as a surface coating for cell culture applications. Adv. Healthc. Mater. 2019, 8, 1900080.

    Google Scholar 

  68. Li, J.; Xun, K. Y.; Pei, K.; Liu, X. J.; Peng, X. Y.; Du, Y. L.; Qiu, L. P.; Tan, W. H. Cell-membrane-anchored DNA Nanoplatform for programming cellular interactions. J. Am. Chem. Soc. 2019, 141, 18013–18020.

    CAS  Google Scholar 

  69. Hou, M.; Yin, X.; Jiang, J. H.; He, J. J. DNAzyme-triggered sol-gel-sol transition of a hydrogel allows target cell enrichment. ACS Appl. Mater. Interfaces 2021, 13, 15031–15039.

    CAS  Google Scholar 

  70. Liu, J. B.; Li, M.; Zuo, X. L. DNA nanotechnology-empowered live cell measurements. Small 2022, 18, 2204711.

    CAS  Google Scholar 

  71. **ao, M. S.; Lai, W.; Yao, X. W.; Pei, H.; Fan, C. H.; Li, L. Programming receptor clustering with DNA probabilistic circuits for enhanced natural killer cell recognition. Angew. Chem., Int. Ed. 2022, 61, e202203800.

    CAS  Google Scholar 

  72. Lin, M. J.; Chen, Y. Y.; Zhao, S. S.; Tang, R.; Nie, Z.; **ng, H. A biomimetic approach for spatially controlled cell membrane engineering using fusogenic spherical nucleic acid. Angew. Chem., Int. Ed. 2022, 61, e202111647.

    CAS  Google Scholar 

  73. Peruzzi, J. A.; Jacobs, M. L.; Vu, T. Q.; Wang, K. S.; Kamat, N. P. Barcoding biological reactions with DNA-functionalized vesicles. Angew. Chem., Int. Ed. 2019, 58, 18683–18690.

    CAS  Google Scholar 

  74. Sun, L. L.; Gao, Y. J.; Wang, Y. G.; Wei, Q.; Shi, J. Y.; Chen, N.; Li, D.; Fan, C. H. Guiding protein delivery into live cells using DNA-programmed membrane fusion. Chem. Sci. 2018, 9, 5967–5975.

    CAS  Google Scholar 

  75. Yu, L.; Mu, Y. K.; Sa, N.; Wang, H. B.; Xu, W. Tumor necrosis factor α induces epithelial-mesenchymal transition and promotes metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer. Oncol. Rep. 2014, 31, 321–327.

    CAS  Google Scholar 

  76. Guo, Z. Z.; Zhang, L. L.; Yang, Q. X.; Peng, R. Z.; Yuan, X.; Xu, L. J.; Wang, Z. M.; Chen, F. M.; Huang, H. D.; Liu, Q. L. et al. Manipulation of multiple cell–cell interactions by tunable DNA scaffold networks. Angew. Chem., Int. Ed. 2022, 61, e202111151.

    CAS  Google Scholar 

  77. Pan, J.; Du, Y. C.; Qiu, H. M.; Upton, L. R.; Li, F. R.; Choi, J. H. Mimicking chemotactic cell migration with DNA programmable synthetic vesicles. Nano Lett. 2019, 19, 9138–9144.

    CAS  Google Scholar 

  78. Matsumoto, A.; Takahashi, Y.; Ariizumi, R.; Nishikawa, M.; Takakura, Y. Development of DNA-anchored assembly of small extracellular vesicle for efficient antigen delivery to antigen presenting cells. Biomaterials 2019, 225, 119518.

    CAS  Google Scholar 

  79. **ong, X. L.; Liu, H. P.; Zhao, Z. L.; Altman, M. B.; Lopez-Colon, D.; Yang, C. J.; Chang, L. J.; Liu, C.; Tan, W. H. DNA aptamer-mediated cell targeting. Angew. Chem., Int. Ed. 2013, 52, 1472–1476.

    CAS  Google Scholar 

  80. Zhang, D.; Zheng, Y. S.; Lin, Z. G.; Liu, X. L.; Li, J.; Yang, H. H.; Tan, W. H. Equip** natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors. Angew. Chem., Int. Ed. 2020, 59, 12022–12028.

    CAS  Google Scholar 

  81. Parent, C. A. Making all the right moves: Chemotaxis in neutrophils and Dictyostelium. Curr. Opin. Cell Biol. 2004, 16, 4–13.

    CAS  Google Scholar 

  82. Vafai, S. B.; Mootha, V. K. Mitochondrial disorders as windows into an ancient organelle. Nature 2012, 491, 374–383.

    CAS  Google Scholar 

  83. Zhou, H. J.; Zhang, B.; Zheng, J. J.; Yu, M. F.; Zhou, T.; Zhao, K.; Jia, Y. X.; Gao, X. F.; Chen, C. Y.; Wei, T. T. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials 2014, 35, 1597–1607.

    CAS  Google Scholar 

  84. Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.

    CAS  Google Scholar 

  85. Wang, D.; Liu, P. F.; Luo, D. Putting DNA to work as generic polymeric materials. Angew. Chem., Int. Ed. 2022, 61, e202110666.

    CAS  Google Scholar 

  86. Wu, L. L.; Wang, Y. D.; Zhu, L.; Liu, Y. L.; Wang, T.; Liu, D.; Song, Y. L.; Yang, C. Y. Aptamer-based liquid biopsy. ACS Appl. Bio Mater. 2020, 3, 2743–2764.

    CAS  Google Scholar 

  87. Lim, F.; Sun, A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980, 210, 908–910.

    CAS  Google Scholar 

  88. Niu, J.; Lunn, D. J.; Pusuluri, A.; Yoo, J. I.; O’Malley, M. A.; Mitragotri, S.; Soh, H. T.; Hawker, C. J. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 2017, 9, 537–545.

    CAS  Google Scholar 

  89. Zhao, S. T.; Zhang, L. L.; Han, J. F.; Chu, J. H.; Wang, H.; Chen, X. L.; Wang, Y. W.; Tun, N.; Lu, L. C.; Bai, X. F. et al. Conformal nanoencapsulation of allogeneic T cells mitigates graft-versus-host disease and retains graft-versus-leukemia activity. ACS Nano 2016, 10, 6189–6200.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 31971305 and 21905196) and Fundamental Research Funds for the Central University (Nos. buctrc201915 and XK1802-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, J., Chen, L. et al. Self-assembly of DNA molecules at bio-interfaces and their emerging applications for biomedicines. Nano Res. 16, 13014–13028 (2023). https://doi.org/10.1007/s12274-023-5597-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5597-y

Keywords

Navigation