Log in

Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Selective catalytic reduction of NO by CO is challenging in environmental catalysis but attractive owing to the advantage of simultaneous elimination of NO and CO. Here, model catalysts consisting of Pd nanoparticles (NPs) and single-atom Pd supported on a CeO2 (111) film grown on Cu (111) (denoted as Pd NPs/CeO2 and Pd1/CeO2, respectively) were successfully prepared and characterized by synchrotron radiation photoemission spectroscopy (SRPES) and infrared reflection absorption spectroscopy (IRAS). The NO + CO adsorption/reaction on the Pd1/CeO2 and Pd NPs/CeO2 catalysts were carefully investigated using SRPES, temperature-programmed desorption (TPD), and IRAS. It is found that the reaction products on both model catalysts are in good agreement with those on real catalysts, demonstrating the good reliability of using these model catalysts to study the reaction mechanism of the NO + CO reaction. On the Pd NPs/CeO2 surface, N2 is formed by the combination of atomic N coming from the dissociation of NO on Pd NPs at higher temperatures. N2O formation occurs probably via chemisorbed NO combined with atomic N on the surface. While on the single-atom Pd1/CeO2 surface, no N2O is detected. The 100% N2 selectivity may stem from the formation of O-N-N-O* intermediate on the surface. Through this study, direct experimental evidence for the reaction mechanisms of the NO + CO reaction is provided, which supports the previous density functional theory (DFT) calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srinivasan, A.; Depcik, C. Review of chemical reactions in the no reduction by co on rhodium/alumina catalysts. Catal. Rev. Sci. Eng. 2010, 52, 462–493.

    CAS  Google Scholar 

  2. Pisanu, A. M.; Gigola, C. E. NO decomposition and NO reduction by CO over Pd/α-Al2O3. Appl. Catal. B: Environ. 1999, 20, 179–189.

    CAS  Google Scholar 

  3. Wang, X. W.; Wu, X. L.; Maeda, N.; Baiker, A. Striking activity enhancement of gold supported on Al-Ti mixed oxide by promotion with ceria in the reduction of NO with CO. Appl. Catal. B: Environ. 2017, 209, 62–68.

    CAS  Google Scholar 

  4. Sui, C.; Yuan, F. L.; Zhang, Z. P.; Wang, D.; Niu, X. Y.; Zhu, Y. J. Catalytic activity of Ru/La1.6Ba0.4NiO4 perovskite-like catalyst for NO + CO reaction: Interaction between Ru and La1.6Ba0.4NiO4. Mol. Catal. 2017, 437, 37–46.

    CAS  Google Scholar 

  5. Lv, Y. Y.; Zhang, H. L.; Yao, X. J.; Dong, L.; Chen, Y. Investigation of the physicochemical properties of CuO/Sm2O3/γ-Al2O3 catalysts and their activity for NO removal by CO. J. Mol. Catal. A Chem. 2016, 420, 34–44.

    CAS  Google Scholar 

  6. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    CAS  Google Scholar 

  7. Asokan, C.; Yang, Y.; Dang, A. L.; Getsoian, A.; Christopher, P. Low-temperature ammonia production during NO reduction by CO is due to atomically dispersed rhodium active sites. ACS Catal. 2020, 10, 5217–5222.

    CAS  Google Scholar 

  8. Fernández, E.; Liu, L. C.; Boronat, M.; Arenal, R.; Concepcion, P.; Corma, A. Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS Catal. 2019, 9, 11530–11541.

    Google Scholar 

  9. Lorenzi, J. M.; Matera, S.; Reuter, K. Synergistic inhibition of oxide formation in oxidation catalysis: A first-principles kinetic monte carlo study of NO + CO oxidation at Pd (100). ACS Catal. 2016, 6, 5191–5197.

    CAS  Google Scholar 

  10. Tan, X. F.; Cheng, G.; Song, X. J.; Chen, X.; Dai, W. X.; Fu, X. Z. The promoting effect of visible light on the CO + NO reaction over the Pd/N-TiO2 catalyst. Catal. Sci. Technol. 2019, 9, 3637–3646.

    CAS  Google Scholar 

  11. Hu, Q.; Cao, K.; Lang, Y.; Chen, R.; Chu, S. Q.; Jia, L. W.; Yue, J.; Shan, B. Improved NO-CO reactivity of highly dispersed Pt particles on CeO2 nanorod catalysts prepared by atomic layer deposition. Catal. Sci. Technol. 2019, 9, 2664–2672.

    CAS  Google Scholar 

  12. Keiski, R. L.; Härkönen, M.; Lahti, A.; Maunula, T.; Savimäki, A.; Slotte, T. An infrared study of CO and NO adsorption on Pt, Rh, Pd 3-way catalysts. Stud. Surf. Sci. Catal. 1995, 96, 85–96.

    CAS  Google Scholar 

  13. Hegde, M. S.; Madras, G.; Patil, K. C. Noble metal ionic catalysts. Acc. Chem. Res. 2009, 42, 704–712.

    CAS  Google Scholar 

  14. Li, L. C.; Zhang, N. Q.; Huang, X.; Liu, Y. Y.; Li, Y.; Zhang, G. Z.; Song, L. Y.; He, H. Hydrothermal stability of core—shell Pd@Ce0.5Zr0.5O2/Al2O3 catalyst for automobile three-way reaction. ACS Catal. 2018, 8, 3222–3231.

    CAS  Google Scholar 

  15. Ye, C. L.; Peng, M.; Wang, Y. H.; Zhang, N. Q.; Wang, D. S Jiao, M. L.; Miller, J. T. Surface hexagonal Pt1Sn1 intermetallic on Pt nanoparticles for selective propane dehydrogenation. ACS Appl. Mater. Interfaces 2020, 12, 25903–25909.

    CAS  Google Scholar 

  16. Li, L. C.; Zhang, N. Q.; He, H.; Zhang, G. Z.; Song, L. Y.; Qiu, W. G. Shape-controlled synthesis of Pd nanocrystals with exposed (110) facets and their catalytic applications. Catal. Today 2019, 327, 28–36.

    CAS  Google Scholar 

  17. Granger, P.; Dhainaut, F.; Pietrzik, S.; Malfoy, P.; Mamede, A. S.; Leclercq, L.; Leclercq, G. An overview: Comparative kinetic behaviour of Pt, Rh and Pd in the NO + CO and NO + H2 reactions. Top. Catal. 2006, 39, 65–76.

    CAS  Google Scholar 

  18. Roy, S.; Hegde, M. S. Pd ion substituted CeO2: A superior de-NOx catalyst to Pt or Rh metal ion doped ceria. Catal. Commun. 2008, 9, 811–815.

    CAS  Google Scholar 

  19. Roy, S.; Marimuthu, A.; Hegde, M. S.; Madras, G. High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline Ce0.98Pd0.02O2-delta: Catalytic and kinetic studies. Appl. Catal. B: Environ. 2007, 71, 23–31.

    CAS  Google Scholar 

  20. Tang, K.; Ren, Y. Q.; Liu, W.; Wei, J. J.; Guo, J. X.; Wang, S. P.; Yang, Y. Z. Insight investigation of active palladium surface sites in palladium-ceria catalysts for NO + CO reaction. ACS Appl. Mater. Interfaces 2018, 10, 13614–13624.

    CAS  Google Scholar 

  21. Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

    CAS  Google Scholar 

  22. Singh, S. A.; Vishwanath, K.; Madras, G. Role of hydrogen and oxygen activation over Pt and Pd-doped composites for catalytic hydrogen combustion. ACS Appl. Mater. Interfaces 2017, 9, 19380–19388.

    CAS  Google Scholar 

  23. Wang, Y. M.; Wöell, C. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: Bridging the materials gap. Chem. Soc. Rev. 2017, 46, 1875–1932.

    CAS  Google Scholar 

  24. **ao, L. H.; Sun, K. P.; Xu, X. L.; Li, X. N. Low-temperature catalytic combustion of methane over Pd/CeO2 prepared by deposition-precipitation method. Catal. Commun. 2005, 6, 796–801.

    CAS  Google Scholar 

  25. Zhu, H. Q.; Qin, Z. F.; Shan, W. J.; Shen, W. J.; Wang, J. G. Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments. J. Catal. 2005, 233, 41–50.

    CAS  Google Scholar 

  26. Liu, Y. N.; Yang, J.; Yang, J.; Wang, L.; Wang, Y. S.; Zhan, W. C.; Guo, Y. L.; Zhao, Y. K.; Guo, Y. Understanding the three-way catalytic reaction on Pd/CeO2 by tuning the chemical state of Pd. Appl. Surf. Sci. 2021, 556, 149766.

    CAS  Google Scholar 

  27. Hu, Z.; Liu, X. F.; Meng, D. M.; Guo, Y.; Guo, Y. L.; Lu, G. Z. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal. 2016, 6, 2265–2279.

    CAS  Google Scholar 

  28. Ma, J.; Lou, Y.; Cai, Y. F.; Zhao, Z. Y.; Wang, L.; Zhan, W. C.; Guo, Y. L.; Guo, Y. The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO2. Catal. Sci. Technol. 2018, 8, 2567–2577.

    CAS  Google Scholar 

  29. Mayernick, A. D.; Janik, M. J. Ab initio thermodynamic evaluation of Pd atom interaction with CeO2 surfaces. J. Chem. Phys. 2009, 131, 084701.

    Google Scholar 

  30. Neitzel, A.; Figueroba, A.; Lykhach, Y.; Skála, T.; Vorokhta, M.; Tsud, N.; Mehl, S.; Ševčíková, K.; Prince, K. C.; Neyman, K. M. et al. Atomically dispersed Pd, Ni, and Pt species in ceria-based catalysts: Principal differences in stability and reactivity. J. Phys. Chem. C 2016, 120, 9852–9862.

    CAS  Google Scholar 

  31. Boronin, A. I.; Slavinskaya, E. M.; Danilova, I. G.; Gulyaev, R. V.; Amosov, Y. I.; Kuznetsov, P. A.; Polukhina, I. A.; Koscheev, S. V.; Zaikovskii, V. I.; Noskov, A. S. Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal. Today 2009, 144, 201–211.

    CAS  Google Scholar 

  32. Ding, W. C.; Gu, X. K.; Su, H. Y.; Li, W. X. Single Pd atom embedded in CeO2 (111) for NO reduction with CO: A first-principles study. J. Phys. Chem. C 2014, 118, 12216–12223.

    CAS  Google Scholar 

  33. Zhang, L.; Spezzati, G.; Muravev, V.; Verheijen, M. A.; Zijlstra, B.; Filot, I. A. W.; Su, Y. Q.; Chang, M. W.; Hensen, E. J. M. Improved Pd/CeO2 catalysts for low-temperature NO reduction: Activation of CeO2 lattice oxygen by Fe do**. ACS Catal. 2021, 11, 5614–5627.

    CAS  Google Scholar 

  34. Hu, S. W.; Wang, W. J.; Wang, Y.; Xu, Q.; Zhu, J. F. Interaction of Zr with CeO2 (111) thin film and its influence on supported Ag nanoparticles. J. Phys. Chem. C 2015, 119, 18257–18266.

    CAS  Google Scholar 

  35. Ju, H. X.; Knesting, K. M.; Zhang, W.; Pan, X.; Wang, C. H.; Yang, Y. W.; Ginger, D. S.; Zhu, J. F. Interplay between interfacial structures and device performance in organic solar cells: A case study with the low work function metal, calcium. ACS Appl. Mater. Interfaces 2016, 8, 2125–2131.

    CAS  Google Scholar 

  36. Zhou, J.; Baddorf, A. P.; Mullins, D. R.; Overbury, S. H. Growth and characterization of Rh and Pd nanoparticles on oxidized and reduced CeOx (111) thin films by scanning tunneling microscopy. J. Phys. Chem. C 2008, 112, 9336–9345.

    CAS  Google Scholar 

  37. Priolkar, K. R.; Bera, P.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.; Lalla, N. P. Formation of Ce1−xPdxO2−δ solid solution in combustion-synthesized Pd/CeO2 catalyst: XRD, XPS, and EXAFS investigation. Chem. Mater. 2002, 14, 2120–2128.

    CAS  Google Scholar 

  38. Muravev, V.; Spezzati, G.; Su, Y. Q.; Parastaev, A.; Chiang, F. K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E. J. M. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478.

    CAS  Google Scholar 

  39. Muravev, V.; Simons, J. F. M.; Parastaev, A.; Verheijen, M. A.; Struijs, J. J. C.; Kosinov, N.; Hensen, E. J. M. Operando spectroscopy unveils the catalytic role of different palladium oxidation states in CO oxidation on Pd/CeO2 catalysts. Angew. Chem., Int. Ed. 2022, 61, e202200434.

    CAS  Google Scholar 

  40. Gulyaev, R. V.; Slavinskaya, E. M.; Novopashin, S. A.; Smovzh, D. V.; Zaikovskii, A. V.; Osadchii, D. Y.; Bulavchenko, O. A.; Korenev, S. V.; Boronin, A. I. Highly active PdCeOx composite catalysts for low-temperature CO oxidation, prepared by plasma-arc synthesis. Appl. Catal. B: Environ. 2014, 147, 132–143.

    CAS  Google Scholar 

  41. Gulyaev, R. V.; Kardash, T. Y.; Malykhin, S. E.; Stonkus, O. A.; Ivanova, A. S.; Boronin, A. I. The local structure of PdxCe1−xO2−xδ solid solutions. Phys. Chem. Chem. Phys. 2014, 16, 13523–13539.

    CAS  Google Scholar 

  42. Spezzati, G.; Benavidez, A. D.; DeLaRiva, A. T.; Su, Y.; Hofmann, J. P.; Asahina, S.; Olivier, E. J.; Neethling, J. H.; Miller, J. T.; Datye, A. K. et al. CO oxidation by Pd supported on CeO2 (100) and CeO2 (111) facets. Appl. Catal. B: Environ. 2019, 243, 36–46.

    CAS  Google Scholar 

  43. Spezzati, G.; Su, Y. Q.; Hofmann, J. P.; Benavidez, A. D.; DeLaRiva, A. T.; McCabe, J.; Datye, A. K.; Hensen, E. J. M. Atomically dispersed Pd-O species on CeO2 (111) as highly active sites for low-temperature CO oxidation. ACS Catal. 2017, 7, 6887–6891.

    CAS  Google Scholar 

  44. Jiang, D.; Wan, G.; García-Vargas, C. E.; Li, L.; Pereira-Hernandez, X. I.; Wang, C. M.; Wang, Y. Elucidation of the active sites in single-atom Pd1/CeO2 catalysts for low-temperature CO oxidation. ACS Catal. 2020, 10, 11356–11364.

    CAS  Google Scholar 

  45. Zeinalipour-Yazdi, C. D.; Willock, D. J.; Thomas, L.; Wilson, K.; Lee, A. F. CO adsorption over Pd nanoparticles: A general framework for IR simulations on nanoparticles. Surf. Sci. 2016, 646, 210–220.

    CAS  Google Scholar 

  46. Li, X.; Rupprechter, G. Sum frequency generation spectroscopy in heterogeneous model catalysis: A minireview of CO-related processes. Catal. Sci. Technol. 2021, 11, 12–26.

    CAS  Google Scholar 

  47. Xu, J.; Ouyang, L. K.; Mao, W.; Yang, X. J.; Xu, X. C.; Su, J. J.; Zhuang, T. Z.; Li, H.; Han, Y. F. Operando and kinetic study of low-temperature, lean-burn methane combustion over a Pd/γ-Al2O3 catalyst. ACS Catal. 2012, 2, 261–269.

    CAS  Google Scholar 

  48. Kong, D. D.; Wang, G. D.; Pan, Y. H.; Hu, S. W.; Hou, J. B.; Pan, H. B.; Campbell, C. T.; Zhu, J. F. Growth, structure, and stability of Ag on CeO2 (111): Synchrotron radiation photoemission studies. J. Phys. Chem. C 2011, 115, 6715–6725.

    CAS  Google Scholar 

  49. Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčíková, K.; Mysliveček, J. et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem., Int. Ed. 2014, 53, 10525–10530.

    CAS  Google Scholar 

  50. Senanayake, S. D.; Zhou, J.; Baddorf, A. P.; Mullins, D. R. The reaction of carbon monoxide with palladium supported on cerium oxide thin films. Surf. Sci. 2007, 601, 3215–3223.

    CAS  Google Scholar 

  51. Sugai, S.; Watanabe, H.; Miki, H.; Kioka, T.; Kawasaki, K. Chemisorption of NO on Pd single-crystals studied by UPS, AES and XPS. Vacuum 1990, 41, 90–92.

    CAS  Google Scholar 

  52. Miki, H.; Nagase, H.; Nagase, T.; Kioka, T.; Sugai, S.; Kawasaki, K. Chemisorption of NO on polycrystalline Pd surface studied by TDS, AES, UPS and XPS. Appl. Surf. Sci 1988, 33-34, 292–300.

    Google Scholar 

  53. Bertolo, M.; Jacobi, K. XPS/UPS investigation of NO on Pd (111) in the temperature range between 20 and 300 K. Surf. Sci. 1990, 236, 143–150.

    CAS  Google Scholar 

  54. Mamede, A. S.; Leclercq, G.; Payen, E.; Granger, P.; Gengembre, L.; Grimblot, J. XPS characterization of adsorbed reaction intermediates on automotive exhaust gas catalysts: NO and CO + NO interactions with Pd. Surf. Interface Anal. 2002, 34, 105–111.

    CAS  Google Scholar 

  55. Brown, W. A.; King, D. A. NO chemisorption and reactions on metal surfaces: A new perspective. J. Phys. Chem. B 2000, 104, 2578–2595.

    CAS  Google Scholar 

  56. Hess, C.; Ozensoy, E.; Yi, C. W.; Goodman, D. W. NO dimer and dinitrosyl formation on Pd (111): From ultra-high-vacuum to elevated pressure conditions. J. Am. Chem. Soc. 2006, 128, 2988–2994.

    CAS  Google Scholar 

  57. Nakamura, I.; Hamada, H.; Fujitani, T. Adsorption and decomposition of NO on K-deposited Pd (111). Surf. Sci. 2003, 544, 45–50.

    CAS  Google Scholar 

  58. Kampling, M.; Al-Shamery, K.; Freund, H. J.; Wilde, M.; Fukutani, K.; Murata, Y. Surface photochemistry on confined systems: UV-laser-induced photodesorption of NO from Pd-nanostructures on Al2O3. Phys. Chem. Chem. Phys. 2002, 4, 2629–2637.

    CAS  Google Scholar 

  59. Viñes, F.; Desikusumastuti, A.; Staudt, T.; Görling, A.; Libuda, J.; Neyman, K. M. A combined density-functional and IRAS study on the interaction of NO with Pd nanoparticles: Identifying new adsorption sites with novel properties. J. Phys. Chem. C 2008, 112, 16539–16549.

    Google Scholar 

  60. Xu, X. P.; Chen, P. J.; Goodman, D. W. A comparative study of the coadsorption of carbon monoxide and nitric oxide on Pd (100), Pd (111), and silica-supported palladium particles with infrared reflection-absorption spectroscopy. J. Phys. Chem. 1994, 98, 9242–9246.

    CAS  Google Scholar 

  61. Butorac, J.; Wilson, E. L.; Fielding, H. H.; Brown, W. A.; Minns, R. S. A RAIRS, TPD and femtosecond laser-induced desorption study of CO, NO and coadsorbed CO + NO on Pd (111). RSC Adv. 2016, 6, 66346–66359.

    CAS  Google Scholar 

  62. Mihaylov, M. Y.; Ivanova, E. Z.; Aleksandrov, H. A.; Petkov, P. S.; Vayssilov, G. N.; Hadjiivanov, K. I. Species formed during NO adsorption and NO + O2 co-adsorption on ceria: A combined FTIR and DFT study. Mol. Catal. 2018, 451, 114–124.

    CAS  Google Scholar 

  63. Wang, Z. W.; Chen, M. S.; Wan, H. L. CO oxidation over highly dispersive supported palladium catalysts. J. **amen Univ. Nat. Sci. 2011, 50, 65–69.

    Google Scholar 

  64. Vayssilov, G. N.; Mihaylov, M.; Petkov, P. S.; Hadjiivanov, K. I.; Neyman, K. M. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: A combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 2011, 115, 23435–23454.

    CAS  Google Scholar 

  65. Li, H. G.; Jiao, X.; Li, L.; Zhao, N.; **ao, F. K.; Wei, W.; Sun, Y. H.; Zhang, B. S. Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites. Catal. Sci. Technol. 2015, 5, 989–1005.

    CAS  Google Scholar 

  66. Zhang, X.; Li, W. Z.; Zhou, Z. A.; Chen, K.; Wu, M. W.; Yuan, L. High dispersed Pd supported on CeO2 (100) for CO oxidation at low temperature. Mol. Catal. 2021, 508, 111580.

    CAS  Google Scholar 

  67. Wang, B.; Weng, D.; Wu, X. D.; Ran, R. Modification of Pd-CeO2 catalyst by different treatments: Effect on the structure and CO oxidation activity. Appl. Surf. Sci. 2011, 257, 3878–3883.

    CAS  Google Scholar 

  68. Deng, Y. B.; Tian, P. F.; Liu, S. J.; He, H. Q.; Wang, Y.; Ouyang, L. K.; Yuan, S. J. Enhanced catalytic performance of atomically dispersed Pd on Pr-doped CeO2 nanorod in CO oxidation. J. Hazard. Mater. 2022, 426, 127793.

    CAS  Google Scholar 

  69. Mihaylov, M. Y.; Ivanova, E. Z.; Vayssilov, G. N.; Hadjiivanov, K. I. Revisiting ceria-NOx interaction: FTIR studies. Catal. Today 2020, 357, 613–620.

    CAS  Google Scholar 

  70. Li, G. X.; Kaneko, K.; Ozeki, S. Chemisorption and photoadsorption of NO on cerium(IV) oxide. Langmuir 1997, 13, 5894–5899.

    CAS  Google Scholar 

  71. Le Bourdon, G.; Adar, F.; Moreau, M.; Morel, S.; Reffner, J.; Mamede, A. S.; Dujardin, C.; Payen, E. In situ characterization by Raman and IR vibrational spectroscopies on a single instrument: DeNOx reaction over a Pd/γ-Al2O3 catalyst. Phys. Chem. Chem. Phys. 2003, 5, 4441–4444.

    CAS  Google Scholar 

  72. Martínez-Arias, A.; Soria, J.; Conesa, J. C.; Seoane, X. L.; Arcoya, A.; Cataluña, R. NO reaction at surface oxygen vacancies generated in cerium oxide. J. Chem. Soc. Faraday Trans. 1995, 91, 1679–1687.

    Google Scholar 

  73. Cheng, X. X.; Zhang, X. Y.; Su, D. X.; Wang, Z. Q.; Chang, J. C.; Ma, C. Y. NO reduction by CO over copper catalyst supported on mixed CeO2 and Fe2O3: Catalyst design and activity test. Appl. Catal. B: Environ. 2018, 239, 485–501.

    CAS  Google Scholar 

  74. Snis, A.; Panas, I. N2O2, N2O2 and N2O22−: Structures, energetics and N—N bonding. Chem. Phys. 1997, 221, 1–10.

    CAS  Google Scholar 

  75. Mašek, K.; Škoda, M.; Beran, J.; Cabala, M.; Prince, K. C.; Skála, T.; Tsud, N.; Matolín, V. Photoemission study of methanol adsorption and decomposition on Pd/CeO2 (111)/Cu (111) thin film model catalyst. Catal Lett. 2015, 145, 1474–1482.

    Google Scholar 

  76. Thirunavukkarasu, K.; Thirumoorthy, K.; Libuda, J.; Gopinath, C. S. A molecular beam study of the NO + CO reaction on Pd (111) surfaces. J. Phys. Chem. B 2005, 109, 13272–13282.

    CAS  Google Scholar 

  77. Zhang, L.; Filot, I. A. W.; Su, Y. Q.; Liu, J. X.; Hensen, E. J. M. Transition metal do** of Pd (111) for the NO + CO reaction. J. Catal. 2018, 363, 154–163.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21872131, 22106085, U1832218, and U1932214) and the National Key Research and Development Program of China (No. 2019YFA0405601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junfa Zhu or Yadong Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Cheng, X., Zhang, N. et al. Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts. Nano Res. 16, 8882–8892 (2023). https://doi.org/10.1007/s12274-023-5585-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5585-2

Keywords

Navigation