Log in

The biomimetic design provides efficient self-healing of ultrahigh-tough and damage-warning bio-based elastomer for protective clothing of metals

  • Flagship Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Facing the ubiquitous corrosion threat, the great significance of develo** high-performance protective materials with the dual function of self-healing defects and self-warning damage is extremely challenging. Herein, inspired by the biological skin and pearls, we proposed that the biological polyurethanes (PU) embedded with multiple dynamic bonds (reversible hydrogen bonds and aromatic disulfide bonds) were combined with polydopamine (PDA)/1,10-phenanthroline (Phen)/graphene oxide (GO) (PPG) nanosheets (PDA encapsulated GO with Phen) to obtain a versatile nacre structure polymer with the interface hydrogen bond between PPG and PU matrix. The biomimetic polymer not only guarantees ultrahigh toughness (116.1 MJ·m−3) and abnormal elongation (2320%) but shows satisfactory repair performance (81% under 25 °C for 3 h), and the coating can accelerate damage recovery (87%) under near-infrared light (NIR) irradiation for 1 h due to the photothermal properties of PPG. The warning of damages in the coating can be enabled through the Phen chelation Fe2+ ions that bring in the corrosion reaction to produce a conspicuous red color, thereby achieving the active warning function of the bionic coating on defects for the first time. In addition, the electrochemical tests exhibit that the repair performance and protection effect of the biomimetic coating in 3.5 wt.% NaCl solution are also trustworthy, and this highly reliable bio-based bionic coating brings a revolutionary program to inaugurate multifunctional and high-performance intelligent materials under harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Q.; Zhang, X. D.; Ben, S.; Zhao, Z. H.; Ning, Y. Z.; Liu, K. S.; Jiang, L. Bio-inspired superhydrophobic magnesium alloy surfaces with active anti-corrosion and self-healing properties. Nano Res. 2023, 16, 3312–3319.

    CAS  Google Scholar 

  2. Liu, C. B.; Wu, H.; Qiang, Y. J.; Zhao, H. C.; Wang, L. P. Design of smart protective coatings with autonomous self-healing and early corrosion reporting properties. Corros. Sci. 2021, 184, 109355.

    CAS  Google Scholar 

  3. Yimyai, T.; Thiramanas, R.; Phakkeeree, T.; Iamsaard, S.; Crespy, D. Adaptive coatings with anticorrosion and antibiofouling properties. Adv. Funct. Mater. 2021, 31, 2102568.

    CAS  Google Scholar 

  4. Akbarzadeh, S.; Ramezanzadeh, M.; Ramezanzadeh, B.; Bahlakeh, G. A green assisted route for the fabrication of a high-efficiency self-healing anti-corrosion coating through graphene oxide nanoplatform reduction by Tamarindus indiaca extract. J. Hazard. Mater. 2020, 390, 122147.

    CAS  Google Scholar 

  5. Cho, S. H.; White, S. R.; Braun, P. V. Self-healing polymer coatings. Adv. Mater. 2009, 21, 645–649.

    CAS  Google Scholar 

  6. Wu, H.; Li, J. W.; Zhang, W. Y.; Chen, T.; Liu, F. C.; Han, E. H. Supramolecular engineering of nacre-inspired bio-based nanocomposite coatings with exceptional ductility and high-efficient self-repair ability. Chem. Eng. J. 2022, 437, 135405.

    CAS  Google Scholar 

  7. Zhu, X. B.; Zheng, W. R.; Zhao, H. C.; Wang, L. P. Non-covalent assembly of a super-tough, highly stretchable and environmentally adaptable self-healing material inspired by nacre. J. Mate. Chem. A 2021, 9, 20737–20747.

    CAS  Google Scholar 

  8. Wang, J.; Zhang, X. W.; Zhang, S.; Kang, J. Y.; Guo, Z. C.; Feng, B. Y.; Zhao, H.; Luo, Z.; Yu, J.; Song, W. L. et al. Semi-convertible hydrogel enabled photoresponsive lubrication. Matter 2021, 4, 675–687.

    Google Scholar 

  9. Yoshida, S.; Ejima, H.; Yoshie, N. Tough elastomers with superior self-recoverability induced by bioinspired multiphase design. Adv. Funct. Mater. 2017, 27, 1701670.

    Google Scholar 

  10. Feng, H. M.; Wang, W.; Wang, T.; Zhang, L.; Li, W.; Hou, J.; Chen, S. G. Preparation of dynamic polyurethane networks with UV-triggered photothermal self-healing properties based on hydrogen and ion bonds for antibacterial applications. J. Mater. Sci. Technol. 2023, 133, 89–101.

    CAS  Google Scholar 

  11. Qu, Q. Q.; He, J.; Da, Y. S.; Zhu, M. H.; Liu, Y. Y.; Li, X. X.; Tian, X. Y.; Wang, H. High toughness polyurethane toward artificial muscles, tuned by mixing dynamic hard domains. Macromolecules 2021, 54, 8243–8254.

    CAS  Google Scholar 

  12. Yao, W. J.; Tian, Q. Y.; Shi, J. Q.; Luo, C. S.; Wu, W. Printable, down/up-conversion triple-mode fluorescence responsive and colorless self-healing elastomers with superior toughness. Adv. Funct. Mater. 2021, 31, 2100211.

    CAS  Google Scholar 

  13. Nellepalli, P.; Patel, T.; Oh, J. K. Dynamic covalent polyurethane network materials: Synthesis and self-healability. Macromol. Rapid Commun. 2021, 42, 2100391.

    CAS  Google Scholar 

  14. Wang, J. W.; Zheng, Y. P.; Qiu, S. L.; Song, L. Ethanol inducing self-assembly of poly-(thioctic acid)/graphene supramolecular ionomers for healable, flame-retardant, shape-memory electronic devices. J. Colloid Interface Sci. 2023, 629, 908–915.

    CAS  Google Scholar 

  15. Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S. R. Polymers with autonomous life-cycle control. Nature 2016, 540, 363–370.

    CAS  Google Scholar 

  16. Kang, S.; Qiao, S. Y.; Cao, Y. T.; Hu, Z. M.; Li, N.; Yu, J. R.; Wang, Y. Multifunctional tubular carbon nanofibers/polyurethane electromagnetic wave absorber with room-temperature self-healing and recyclable performance. Nano Res. 2023, 16, 33–44.

    CAS  Google Scholar 

  17. Chen, K.; Ding, J.; Li, L. D.; Shang, G. Y.; Yue, Y. H.; Guo, L. Amorphous alumina nanosheets/polylactic acid artificial nacre. Matter 2019, 1, 1385–1398.

    Google Scholar 

  18. Ghazlan, A.; Ngo, T.; Tan, P.; **e, Y. M.; Tran, P.; Donough, M. Inspiration from nature’s body armours—A review of biological and bioinspired composites. Compos. Part B:Eng. 2021, 205, 108513.

    CAS  Google Scholar 

  19. Zhang, Y. Y.; Peng, J. S.; Li, M. Z.; Saiz, E.; Wolf, S. E.; Cheng, Q. F. Bioinspired supertough graphene fiber through sequential interfacial interactions. ACS Nano 2018, 12, 8901–8908.

    CAS  Google Scholar 

  20. Diesendruck, C. E.; Sottos, N. R.; Moore, J. S.; White, S. R. Biomimetic self-healing. Angew. Chem., Int. Ed. 2015, 54, 10428–10447.

    CAS  Google Scholar 

  21. Gong, S. S.; Ni, H.; Jiang, L.; Cheng, Q. F. Learning from nature: Constructing high performance graphene-based nanocomposites. Mater. Today 2017, 20, 210–219.

    CAS  Google Scholar 

  22. Huang, C. J.; Peng, J. S.; Wan, S. J.; Du, Y.; Dou, S. X.; Wagner, H. D.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-casting. Angew. Chem., Int. Ed. 2019, 58, 7636–7640.

    CAS  Google Scholar 

  23. Restrepo, V.; Martinez, R. V. Bioinspired fabrication of reconfigurable elastomeric cementitious structures using self-healing mechanical adhesives interfaces. Mater. Des. 2021, 205, 109691.

    Google Scholar 

  24. Zhang, K. R.; Gao, H. L.; Pan, X. F.; Zhou, P.; **ng, X.; Xu, R.; Pan, Z.; Wang, S.; Zhu, Y. M.; Hu, B. et al. Multifunctional bilayer nanocomposite guided bone regeneration membrane. Matter 2019, 1, 770–781.

    CAS  Google Scholar 

  25. Owuor, P. S.; Tsafack, T.; Schara, S.; Hwang, H.; Jung, S.; Salvatierra, R. V.; Li, T.; Susarla, S.; Ren, M. Q.; Wei, B. Q. et al. Achieving self-stiffening and laser healing by interconnecting graphene oxide sheets with amine-functionalized ovalbumin. Adv. Mater. Interfaces 2018, 5, 1800932.

    Google Scholar 

  26. Wang, J. W.; Zheng, Y. P.; Ren, W.; Ang, E. H.; Song, L.; Zhu, J. X.; Hu, Y. Intrinsic ionic confinement dynamic engineering of ionomers with low dielectric-k, high healing and stretchability for electronic device reconfiguration. Chem. Eng. J. 2023, 453, 139837.

    CAS  Google Scholar 

  27. Yanagisawa, Y.; Nan, Y. L.; Okuro, K.; Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2018, 359, 72–76.

    CAS  Google Scholar 

  28. Kushner, A. M.; Guan, Z. B. Modular design in natural and biomimetic soft materials. Angew. Chem., Int. Ed. 2011, 50, 9026–9057.

    CAS  Google Scholar 

  29. Kong, W. B.; Yang, Y. Y.; Wang, Y. J.; Cheng, H. F.; Yan, P. Y.; Huang, L.; Ning, J. Y.; Zeng, F. H.; Cai, X. F.; Wang, M. An ultralow hysteresis, self-healing and stretchable conductor based on dynamic disulfide covalent adaptable networks. J. Mate. Chem. A 2022, 10, 2012–2020.

    CAS  Google Scholar 

  30. Fu, X.; Tian, L.; Fan, Y.; Ye, W.; Qiao, Z. A.; Zhao, J.; Ren, L.; Ming, W. Stimuli-responsive self-healing anticorrosion coatings: From single triggering behavior to synergetic multiple protections. Mater. Today Chem. 2021, 22, 100575.

    CAS  Google Scholar 

  31. Qiu, Z. J.; Zhao, W. J.; Cao, M. K.; Wang, Y. Q.; Lam, J. W. Y.; Zhang, Z.; Chen, X.; Tang, B. Z. Dynamic visualization of stress/strain distribution and fatigue crack propagation by an organic mechanoresponsive AIE luminogen. Adv. Mater. 2018, 30, 1803924.

    Google Scholar 

  32. Liu, C. B.; **, Z. Y.; Cheng, L.; Zhao, H. C.; Wang, L. P. Synthesis of nanosensors for autonomous warning of damage and self-repairing in polymeric coatings. Nanoscale 2020, 12, 3194–3204.

    CAS  Google Scholar 

  33. Wang, J. K.; Ma, L. W.; Guo, X.; Wu, S. H.; Liu, T.; Yang, J. Z.; Ren, C. H.; Li, S. S.; Zhang, D. W. Two birds with one stone: Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating. Chem. Eng. J. 2022, 433, 134515.

    CAS  Google Scholar 

  34. Liu, T.; Zhang, D. W.; Ma, L. W.; Huang, Y.; Hao, X. P.; Terryn, H.; Mol, A.; Li, X. G. Smart protective coatings with self-sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers. Corros. Sci. 2022, 200, 110254.

    CAS  Google Scholar 

  35. Cao, L.; Wang, Q.; Wang, W.; Li, Q. Y.; Chen, S. G. Synthesis of smart nanofiber coatings with autonomous self-warning and self-healing functions. ACS Appl. Mater. Interfaces 2022, 14, 27168–27176.

    CAS  Google Scholar 

  36. Li, W. L.; Matthews, C. C.; Yang, K.; Odarczenko, M. T.; White, S. R.; Sottos, N. R. Autonomous indication of mechanical damage in polymeric coatings. Adv. Mater. 2016, 28, 2189–2194.

    CAS  Google Scholar 

  37. Cheng, L.; Liu, C. B.; Zhao, H. C.; Wang, L. P. Photothermal-triggered shape memory coatings with active repairing and corrosion sensing properties. J. Mater. Chem. A 2021, 9, 22509–22521.

    CAS  Google Scholar 

  38. Liu, C. B.; Cheng, L.; Qian, B.; Cui, L. Y.; Zeng, R. C. Corrosion self-warning and repair tracking of polymeric coatings based on stimulus responsive nanosensors. Nanoscale 2022, 14, 8429–8440.

    CAS  Google Scholar 

  39. Patel, C. J.; Mannari, V. Air-drying bio-based polyurethane dispersion from cardanol: Synthesis and characterization of coatings. Prog. Org. Coat. 2014, 77, 997–1006.

    CAS  Google Scholar 

  40. Bhunia, H. P.; Nando, G. B.; Chaki, T. K.; Basak, A.; Lenka, S.; Nayak, P. L. Synthesis and characterization of polymers from cashewnut shell liquid (CNSL), a renewable resource II. Synthesis of polyurethanes. Eur. Polym. J. 1999, 35, 1381–1391.

    CAS  Google Scholar 

  41. Wu, H.; Cheng, L.; Liu, C. B.; Lan, X. J.; Zhao, H. C. Engineering the interface in graphene oxide/epoxy composites using bio-based epoxy-graphene oxide nanomaterial to achieve superior anticorrosion performance. J. Colloid Interface Sci. 2021, 587, 755–766.

    CAS  Google Scholar 

  42. Zhou, S. F.; Yan, J.; Chen, J. L.; Yan, H. M.; Zhang, Y.; Huang, J.; Zhao, G. Z.; Zhang, Q. X.; Liu, Y. Q. Polydopamine/polyethyleneimine co-crosslinked graphene oxide for the enhanced tribological performance of epoxy resin coatings. J. Mater. Sci. Technol. 2023, 136, 13–20.

    CAS  Google Scholar 

  43. Müeller, M.; Keßler, B. Deposition from dopamine solutions at Ge substrates: An in situ ATR-FTIR study. Langmuir 2011, 27, 12499–12505.

    Google Scholar 

  44. Lee, W.; Lee, J. U.; Jung, B. M.; Byun, J. H.; Yi, J. W.; Lee, S. B.; Kim, B. S. Simultaneous enhancement of mechanical, electrical and thermal properties of graphene oxide paper by embedding dopamine. Carbon 2013, 65, 296–304.

    CAS  Google Scholar 

  45. Zheng, C.; Ren, H. J.; Cui, Z. F.; Chen, F. H.; Hong, G. Y. Synthesis and characterization of nano-scale Terbium(III)-trimesic acid (TMA)-1, 10-phenanthroline(phen) luminescent complex. J. Alloys Compd. 2009, 477, 333–336.

    CAS  Google Scholar 

  46. Davoodian, N.; Nakhaei Pour, A.; Izadyar, M.; Mohammadi, A.; Salimi, A.; Kamali Shahri, S. M. Fischer-Tropsch synthesis using zeolitic imidazolate framework (ZIF-7 and ZIF-8)-supported cobalt catalysts. Appl. Organomet. Chem. 2020, 34, e5747.

    CAS  Google Scholar 

  47. Cheng, L.; Wu, H.; Li, J.; Zhao, H. C.; Wang, L. P. Polydopamine modified ultrathin hydroxyapatite nanosheets for anti-corrosion reinforcement in polymeric coatings. Corros. Sci. 2021, 178, 109064.

    CAS  Google Scholar 

  48. Rella, S.; Mazzotta, E.; Caroli, A.; De Luca, M.; Bucci, C.; Malitesta, C. Investigation of polydopamine coatings by X-ray photoelectron spectroscopy as an effective tool for improving biomolecule conjugation. Appl. Surf. Sci. 2018, 447, 31–39.

    CAS  Google Scholar 

  49. Cheng, L.; Liu, C. B.; Wu, H.; Zhao, H. C.; Wang, L. P. A two-dimensional nanocontainer based on mesoporous polydopamine coated lamellar hydroxyapatite towards anticorrosion reinforcement of waterborne epoxy coatings. Corros. Sci. 2021, 193, 109891.

    CAS  Google Scholar 

  50. Zangmeister, R. A.; Morris, T. A.; Tarlov, M. J. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 2013, 29, 8619–8628.

    CAS  Google Scholar 

  51. Tong, Z. M.; Song, L. N.; Chen, S. F.; Hu, J. K.; Hou, Y.; Liu, Q.; Ren, Y. Y.; Zhan, X. L.; Zhang, Q. H. Hagfish-inspired smart SLIPS marine antifouling coating based on supramolecular: Lubrication modes responsively switching and self-healing properties. Adv. Funct. Mater. 2022, 32, 2201290.

    CAS  Google Scholar 

  52. Xun, X. C.; Zhao, X.; Li, Q.; Zhao, B.; Ouyang, T.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Zhang, Y. Tough and degradable self-healing elastomer from synergistic soft-hard segments design for biomechano-robust artificial skin. ACS Nano 2021, 15, 20656–20665.

    CAS  Google Scholar 

  53. Nawaz, H.; Tian, W. G.; Zhang, J. M.; Jia, R. N.; Chen, Z. Y.; Zhang, J. Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe2+ ions with naked eye and fluorescent dual modes. ACS Appl. Mater. Interfaces 2018, 10, 2114–2121.

    CAS  Google Scholar 

  54. Rehman, H. U.; Chen, Y. J.; Hedenqvist, M. S.; Li, H.; Xue, W. C.; Guo, Y. L.; Guo, Y. P.; Duan, H. N.; Liu, H. Z. Self-healing shape memory PUPCL copolymer with high cycle life. Adv. Funct. Mater. 2018, 28, 1704109.

    Google Scholar 

  55. Chen, Y. L.; Ma, Y.; Yin, Q. F.; Pan, F.; Cui, C. J.; Zhang, Z. Q.; Liu, B. Advances in mechanics of hierarchical composite materials. Compos. Sci. Technol. 2021, 214, 108970.

    Google Scholar 

  56. Min, Y. J.; Kang, K. H.; Kim, D. E. Development of polyimide films reinforced with boron nitride and boron nitride nanosheets for transparent flexible device applications. Nano Res. 2018, 11, 2366–2378.

    CAS  Google Scholar 

  57. Wang, D.; Ren, S. Y.; Chen, J. Y.; Li, Y. K.; Wang, Z. F.; Xu, J. H.; Jia, X.; Fu, J. J. Healable, highly thermal conductive, flexible polymer composite with excellent mechanical properties and multiple functionalities. Chem. Eng. J. 2022, 430, 133163.

    CAS  Google Scholar 

  58. Kim, S. M.; Jeon, H.; Shin, S. H.; Park, S. A.; Jegal, J.; Hwang, S. Y.; Oh, D. X.; Park, J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 2018, 30, 1705145.

    Google Scholar 

  59. Liu, M. C.; Zhong, J.; Li, Z. J.; Rong, J. C.; Yang, K.; Zhou, J. Y.; Shen, L.; Gao, F.; Huang, X. L.; He, H. F. A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding. Eur. Polym. J. 2020, 124, 109475.

    CAS  Google Scholar 

  60. Miwa, Y.; Kurachi, J.; Kohbara, Y.; Kutsumizu, S. Dynamic ionic crosslinks enable high strength and ultrastretchability in a single elastomer. Commun. Chem. 2018, 1, 5.

    Google Scholar 

  61. Xu, J.; Wang, X. Y.; Zhang, X. R.; Zhang, Y. M.; Yang, Z. H.; Li, S.; Tao, L. M.; Wang, Q. H.; Wang, T. M. Room-temperature self-healing supramolecular polyurethanes based on the synergistic strengthening of biomimetic hierarchical hydrogen-bonding interactions and coordination bonds. Chem. Eng. J. 2023, 451, 138673.

    CAS  Google Scholar 

  62. Hœrlé, S.; Mazaudier, F.; Dillmann, Santarini, G. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles. Corros. Sci. 2004, 46, 1431–1465.

    Google Scholar 

  63. Zhu, X. B.; Yan, Q. Q.; Cheng, L.; Wu, H.; Zhao, H. C.; Wang, L. P. Self-alignment of cationic graphene oxide nanosheets for anticorrosive reinforcement of epoxy coatings. Chem. Eng. J. 2020, 389, 124435.

    Google Scholar 

  64. Ding, J. H.; Zhao, H. R.; Zhou, M.; Liu, P. L.; Yu, H. B. Super-anticorrosive inverse nacre-like graphene-epoxy composite coating. Carbon 2021, 181, 204–211.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the LingChuang Research Project of China National Nuclear Corporation (No. E041F212Z1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchun Liu.

Electronic Supplementary Material

12274_2023_5544_MOESM1_ESM.pdf

The biomimetic design provides efficient self-healing of ultrahightough and damage-warning bio-based elastomer for protective clothing of metals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zhu, Z., Gao, N. et al. The biomimetic design provides efficient self-healing of ultrahigh-tough and damage-warning bio-based elastomer for protective clothing of metals. Nano Res. 16, 10587–10596 (2023). https://doi.org/10.1007/s12274-023-5544-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5544-y

Keywords

Navigation