Log in

Aptamer-induced in-situ growth of acetylcholinesterase-Cu3(PO4)2 hybrid nanoflowers for electrochemical detection of organophosphorus inhibitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Enzyme-inorganic hybrid nanoflowers (HNFs) have shown excellent sensing capabilities due to their large specific surface area as well as the simplicity and mildness of the preparation process. However, coupling HNFs to electrodes to fabricate a uniform and controllable enzymatic electrochemical sensing interface remains a challenge. Here, we proposed an aptamer-induced in-situ fabrication strategy for preparing an HNF-based electrochemical sensor with ideal performance. Central to this strategy is the introduction of acetylcholinesterase (AChE)-specific binding aptamer (Apt), which induces the in-situ growth of AChE-copper phosphate (Cu3(PO4)2) HNFs on the surface of carbon paper (CP). In addition, a dense gold nanoparticle (AuNP) layer was electrodeposited on the CP for anchoring Apt and further extending the electroactive surface area. The prepared AChE-Cu3(PO4)2 HNF/Apt/AuNP/CP biosensor exhibited a wide detection range from 1 to 107 pM for the four organophosphorus inhibitors, including isocarbophos, dichlorvos, methamidophos, and parathion, with detection limits down to 0.016, 0.028, 0.071, and 0.113 pM, respectively. With the reactivation of pralidoxime chloride, the electrode can still recover 98.1% of the response after five times of repeated use. In real sample detection, the biosensor achieved high recoveries from 96.45% to 100.13%. The detection target may be extendable to other AChE inhibitors (e.g., drugs for Alzheimer’s disease). This study demonstrates for the first time the feasibility of using aptamers as an inducer to fabricate an electrochemical enzyme sensing interface in-situ. This strategy can be used to fabricate other enzyme-based biosensors and therefore has broader applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colović, M. B.; Krstić, D. Z.; Lazarević-Pašti, T. D.; Bondžić, A. M.; Vasić, V. M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335.

    Google Scholar 

  2. Weng, R.; Lou, S. T.; Pang, X.; Song, Y.; Su, X.; **ao, Z. Y.; Qiu, J. Multi-residue analysis of 126 pesticides in chicken muscle by ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chem. 2020, 309, 125503.

    CAS  Google Scholar 

  3. Moinfar, S.; Khodayari, A.; Abdulrahman, S. S.; Aghaei, A.; Sohrabnezhad, S.; Jamil, L. A. Development of a SPE/GC-MS method for the determination of organophosphorus pesticides in food samples using syringe filters packed by GNP/MIL-101(Cr) nanocomposite. Food Chem. 2022, 371, 130997.

    CAS  Google Scholar 

  4. Jain, U.; Saxena, K.; Hooda, V.; Balayan, S.; Singh, A. P.; Tikadar, M.; Chauhan, N. Emerging vistas on pesticides detection based on electrochemical biosensors—An update. Food Chem. 2022, 371, 131126.

    CAS  Google Scholar 

  5. Alex, A. V.; Mukherjee, A. Review of recent developments (2018–2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection. Microchem. J. 2021, 161, 105779.

    Google Scholar 

  6. Cao, J.; Wang, M.; Yu, H.; She, Y. X.; Cao, Z.; Ye, J. M.; Abd El-Aty, A. M.; Hacımüftüoğlu, A.; Wang, J.; Lao, S. B. An overview on the mechanisms and applications of enzyme inhibition-based methods for determination of organophosphate and carbamate pesticides. J. Agric. Food Chem. 2020, 68, 7298–7315.

    CAS  Google Scholar 

  7. Zhong, H. T.; Xue, Y. T.; Zhang, P. Y.; Liu, B.; Zhang, X.; Chen, Z. B.; Li, K.; Zheng, L. R.; Zuo, X. Cascade reaction system integrating nanozymes for colorimetric discrimination of organophosphorus pesticides. Sens. Actuators B: Chem. 2022, 350, 130810.

    CAS  Google Scholar 

  8. Zhang, W. H.; Yin, M. J.; Zhao, Q.; **, C. G.; Wang, N. X.; Ji, S. L.; Ritt, C. L.; Elimelech, M.; An, Q. F. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat. Nanotechnol. 2021, 16, 337–343.

    Google Scholar 

  9. Zhou, X. Y.; Wang, C. C.; Wu, L. N.; Wei, W.; Liu, S. Q. An OliGreen-responsive fluorescence sensor for sensitive detection of organophosphorus pesticide based on its specific selectivity towards T-Hg2+-T DNA structure. Spectrochim. Acta Part A Mol Biomol. Spectrosc. 2021, 247, 119155.

    CAS  Google Scholar 

  10. Yao, T. T.; Liu, A. R.; Liu, Y.; Wei, M.; Wei, W.; Liu, S. Q. Ratiometric fluorescence sensor for organophosphorus pesticide detection based on opposite responses of two fluorescence reagents to MnO2 nanosheets. Biosens. Bioelectron. 2019, 145, 111705.

    CAS  Google Scholar 

  11. Wu, J. H.; Yang, Q. T.; Li, Q.; Li, H. Y.; Li, F. Two-dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticides without the interference of H2O2 and color. Anal. Chem. 2021, 93, 4084–4091.

    CAS  Google Scholar 

  12. Cui, H. F.; Zhang, T. T.; Lv, Q. Y.; Song, X. J.; Zhai, X. J.; Wang, G. G. An acetylcholinesterase biosensor based on do** Au nanorod@SiO2 nanoparticles into TiO2-chitosan hydrogel for detection of organophosphate pesticides. Biosens. Bioelectron. 2019, 141, 111452.

    CAS  Google Scholar 

  13. Cui, H. F.; Wu, W. W.; Li, M. M.; Song, X. J.; Lv, Y. X.; Zhang, T. T. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens. Bioelectron. 2018, 99, 223–229.

    CAS  Google Scholar 

  14. Kurbanoglu, S.; Ozkan, S. A.; Merkoçi, A. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens. Bioelectron. 2017, 89, 886–898.

    CAS  Google Scholar 

  15. Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D. Nanomaterials in electrochemical biosensors for pesticide detection: Advances and challenges in food analysis. Microchim. Acta 2016, 183, 2063–2083.

    CAS  Google Scholar 

  16. Yan, X. N.; Deng, J.; Xu, J. S.; Li, H.; Wang, L. L.; Chen, D.; **e, J. A novel electrochemical sensor for isocarbophos based on a glassy carbon electrode modified with electropolymerized molecularly imprinted terpolymer. Sens. Actuators B: Chem. 2012, 171–172, 1087–1094.

    Google Scholar 

  17. Bilal, S.; Sami, A. J.; Hayat, A.; Rehman, M. F. U. Assessment of pesticide induced inhibition of Apis mellifera (honeybee) acetylcholinesterase by means of N-doped carbon dots/BSA nanocomposite modified electrochemical biosensor. Bioelectrochemistry 2022, 144, 107999.

    CAS  Google Scholar 

  18. Niu, K.; Gao, J.; Wu, L. X.; Lu, X. B.; Chen, J. P. Nitrogen-doped graphdiyne as a robust electrochemical biosensing platform for ultrasensitive detection of environmental pollutants. Anal. Chem. 2021, 93, 8656–8662.

    CAS  Google Scholar 

  19. Zhang, J. H.; Hu, H. Y.; Yang, L. Q. Ultra-highly sensitive and stable acetylcholinesterase biosensor based on TiO2-NRs and rGO. Microchem. J. 2021, 168, 106435.

    CAS  Google Scholar 

  20. An, Y. Q.; Dong, S. Y.; He, Z. X.; **e, Q.; Huang, T. L. Heteroatom-doped Co-MOF derivative enhancing immobilization and activity of two enzymes for small-molecules electrochemical determination. Microchem. J. 2022, 172, 106942.

    CAS  Google Scholar 

  21. Eş, I.; Vieira, J. D. G.; Amaral, A. C. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl. Microbiol. Biotechnol. 2015, 99, 2065–2082.

    Google Scholar 

  22. Ge, J.; Lei, J. D.; Zare, R. N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432.

    CAS  Google Scholar 

  23. Parkash, A. Metal-organic framework derived ultralow-loading platinum-copper catalyst: A highly active and durable bifunctional electrocatalyst for oxygen-reduction and evolution reactions. Nanotechnology 2021, 32, 325703.

    CAS  Google Scholar 

  24. Gao, J. J.; Liu, H.; Tong, C.; Pang, L. Y.; Feng, Y. Q.; Zuo, M. G.; Wei, Z. Q.; Li, J. Q. Hemoglobin-Mn3(PO4)2 hybrid nanoflower with opulent electroactive centers for high-performance hydrogen peroxide electrochemical biosensor. Sens. Actuators B: Chem. 2020, 307, 127628.

    Google Scholar 

  25. **, R.; Kong, D. S.; Zhao, X.; Li, H. X.; Yan, X.; Liu, F. M.; Sun, P.; Du, D.; Lin, Y. H.; Lu, G. Y. Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide. Biosens. Bioelectron. 2019, 141, 111473.

    CAS  Google Scholar 

  26. Yin, Y. Q.; **ao, Y.; Lin, G.; **ao, Q.; Lin, Z. A.; Cai, Z. W. An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J. Mater. Chem. B 2015, 3, 2295–2300.

    CAS  Google Scholar 

  27. Kostadinova, O.; Kochnitcharova, D.; Lefterova, E.; Shipochka, M.; Angelov, P.; Petkova, T. Network modification of phosphate materials by transition metals do**. Bulg. Chem. Commun. 2018, 50, 50–54.

    Google Scholar 

  28. Liang, X.; Liu, Y.; Wen, K.; Jiang, W.; Li, Q. S. Immobilized enzymes in inorganic hybrid nanoflowers for biocatalytic and biosensing applications. J. Mater. Chem. B 2021, 9, 7597–7607.

    CAS  Google Scholar 

  29. Wang, S.; Huo, R. F.; Zhang, R.; Zheng, Y. C.; Li, C. J.; Pan, L. Synthesis of core-shell N−TiO2@CuOx with enhanced visible light photocatalytic performance. RSC Adv. 2018, 8, 24866–24872.

    CAS  Google Scholar 

  30. Kim, K. H.; Jeong, J. M.; Lee, S. J.; Choi, B. G.; Lee, K. G. Protein-directed assembly of cobalt phosphate hybrid nanoflowers. J. Colloid Interface Sci. 2016, 484, 44–50.

    CAS  Google Scholar 

  31. Engelen, W.; Janssen, B. M. G.; Merkx, M. DNA-based control of protein activity. Chem. Commun. 2016, 52, 3598–3610.

    CAS  Google Scholar 

  32. Liu, Y.; Lin, C. X.; Li, H. Y.; Yan, H. Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew. Chem., Int. Ed. 2005, 44, 4333–4338.

    CAS  Google Scholar 

  33. Lu, Q. Y.; Hu, Y. X.; Li, C. Y.; Kuang, Y. Aptamer-array-guided protein assembly enhances synthetic mRNA switch performance. Angew. Chem., Int. Ed. 2022, 61, e202207319.

    CAS  Google Scholar 

  34. Le, T. T.; Chumphukam, O.; Cass, A. E. G. Determination of minimal sequence for binding of an aptamer. A comparison of truncation and hybridization inhibition methods. RSC Adv. 2014, 4, 47227–47233.

    CAS  Google Scholar 

  35. Yang, L. M.; Zhang, X. L.; Li, M. M.; Qu, L. J.; Liu, Z. Acetylcholinesterase-Cu3(PO4)2 hybrid nanoflowers for electrochemical detection of dichlorvos using square-wave voltammetry. Anal. Methods 2022, 14, 3911–3920.

    CAS  Google Scholar 

  36. Gao, J. J.; Liu, H.; Pang, L. Y.; Guo, K.; Li, J. Q. Biocatalyst and colorimetric/fluorescent dual biosensors of H2O2 constructed via hemoglobin-Cu3(PO4)2 organic/inorganic hybrid nanoflowers. ACS Appl. Mater. Interfaces 2018, 10, 30441–30450.

    CAS  Google Scholar 

  37. Wahab, A. K.; Bashir, S.; Al-Salik, Y.; Idriss, H. Ethanol photoreactions over Au-Pd/TiO2. Appl. Petrochem. Res. 2014, 4, 55–62.

    CAS  Google Scholar 

  38. Wei, S. T.; Qi, K.; **, Z.; Cao, J. S.; Zheng, W. T.; Chen, H.; Cui, X. Q. One-step synthesis of a self-supported copper phosphide nanobush for overall water splitting. ACS Omega 2016, 1, 1367–1373.

    CAS  Google Scholar 

  39. Ioakeimidis, A.; Papadas, I. T.; Koutsouroubi, E. D.; Armatas, G. S.; Choulis, S. A. Thermal analysis of metal-organic precursors for functional Cu:NiOx hole transporting layer in inverted perovskite solar cells: Role of solution combustion chemistry in Cu:NiOx thin films processing. Nanomaterials 2021, 11, 3074.

    CAS  Google Scholar 

  40. Li, Z. Z.; **n, Y. M.; Zhang, Z. H.; Wu, H. J.; Wang, P. Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection. Sci. Rep. 2015, 5, 10617.

    CAS  Google Scholar 

  41. Zeng, J.; **a, Y. N. Not just a pretty flower. Nat. Nanotechnol. 2012, 7, 415–416.

    CAS  Google Scholar 

  42. Itsoponpan, T.; Thanachayanont, C.; Hasin, P. Sponge-like CuInS2 microspheres on reduced graphene oxide as an electrocatalyst to construct an immobilized acetylcholinesterase electrochemical biosensor for chlorpyrifos detection in vegetables. Sens. Actuators B: Chem. 2021, 337, 129775.

    CAS  Google Scholar 

  43. Song, D. D.; Jiang, X. Y.; Li, Y. S.; Lu, X.; Luan, S. R.; Wang, Y. Z.; Li, Y.; Gao, F. M. Metal-organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and TI3C2 MXene/Au NPs composites for electrochemical pesticide detection. J. Hazard. Mater. 2019, 373, 367–376.

    CAS  Google Scholar 

  44. Zhao, Y. S.; Li, X. L.; Chen, J. M.; Lu, X.; Yang, Y. X.; Song, D. D.; Gao, F. M. Porous hierarchical peony-like cobalt-based bimetallic oxides structured by ultrathin nanosheets for highly sensitive electrochemical pesticides detection. Sens. Actuators B: Chem. 2022, 352, 131072.

    CAS  Google Scholar 

  45. Tutunaru, O.; Mihailescu, C. M.; Savin, M.; Tincu, B. C.; Stoian, M. C.; Muscalu, G. S.; Firtat, B.; Dinulescu, S.; Craciun, G.; Moldovan, C. A. et al. Acetylcholinesterase entrapment onto carboxyl-modified single-walled carbon nanotubes and poly(3,4-ethylenedioxythiophene) nanocomposite, film electrosynthesis characterization, and sensor application for dichlorvos detection in apple juice. Microchem. J. 2021, 169, 106573.

    CAS  Google Scholar 

  46. Bilal, S.; Mudassir Hassan, M.; Fayyaz ur Rehman, M.; Nasir, M.; Jamil Sami, A.; Hayat, A. An insect acetylcholinesterase biosensor utilizing WO3/g-C3N4 nanocomposite modified pencil graphite electrode for phosmet detection in stored grains. Food Chem. 2021, 346, 128894.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the National Natural Science Foundation of China (No. 31871878).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Yang or Zhen Liu.

Electronic Supplementary Material

12274_2023_5528_MOESM1_ESM.pdf

Aptamer-induced in-situ growth of acetylcholinesterase-Cu3(PO4)2 hybrid nanoflowers for electrochemical detection of organophosphorus inhibitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Qu, L., Zhang, X. et al. Aptamer-induced in-situ growth of acetylcholinesterase-Cu3(PO4)2 hybrid nanoflowers for electrochemical detection of organophosphorus inhibitors. Nano Res. 16, 12134–12143 (2023). https://doi.org/10.1007/s12274-023-5528-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5528-y

Keywords

Navigation