Log in

Moiré-superlattice MXenes enabled ultra-stable K-ion storage in neutral electrolyte

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ti3C2 MXene is an auspicious energy storage material due to its metallic conductivity and layered assembly. However, in the real working condition of electrochemical energy storage with long cycle charging—discharging, a structural collapse is usually caused by the stacking of its layers creating a large attenuation of specific capacitance. Inspired by the superlattice effect of magic angle graphene, we conducted microscopical regulation of rotation mismatch on the Ti3C2 lattice; consequently, a hexagonal few-layered Ti3C2 free-standing film constructed with Moiré-superlattices. Such finding not only solves the problem of Ti3C2 structural collapse but also dramatically improves the specific capacitance of Ti3C2 as a supercapacitor electrode under long cycle charging and discharging. The ultra-stable energy storage of this electrode material in a neutral aqueous electrolyte was realized. Moreover, the formation mechanism of rotating Moiré pattern is revealed through microscopy and microanalysis of the produced Moiré pattern, assisted with modeling and analyzing the underlying mechanism between the Moiré pattern and the rotation angle. Our work provides experimental and theoretical support for future construction of Moiré-superlattice structure for a wide range of MXene phases and is undoubtedly promoting the development of MXene materials in the field of energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, D. L.; Kubista, K. D.; Rutter, G. M.; Ruan, M.; de Heer, W. A.; First, P. N.; Stroscio, J. A. Observing the quantization of zero mass carriers in graphene. Science 2009, 324, 924–927.

    CAS  Google Scholar 

  2. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    CAS  Google Scholar 

  3. MacDonald, A. H.; Bistritzer, R. Materials science: Graphene Moiré mystery solved? Nature 2011, 474, 453–454.

    CAS  Google Scholar 

  4. Ci, L. J.; Song, L.; **, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.

    CAS  Google Scholar 

  5. Luican, A.; Li, G. H.; Reina, A.; Kong, J.; Nair, R. R.; Novoselov, K. S.; Geim, A. K.; Andrei, E. Y. Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 2011, 106, 126802.

    CAS  Google Scholar 

  6. Yankowitz, M.; Jung, J.; Laksono, E.; Leconte, N.; Chittari, B. L.; Watanabe, K.; Taniguchi, T.; Adam, S.; Graf, D.; Dean, C. R. Dynamic band-structure tuning of graphene Moiré superlattices with pressure. Nature 2018, 557, 404–408.

    CAS  Google Scholar 

  7. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

    CAS  Google Scholar 

  8. Kim, K.; DaSilva, A.; Huang, S. Q.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watanabe, K.; LeRoy, B. J.; MacDonald, A. H.; Tutuc, E. Tunable Moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 3364–3369.

    CAS  Google Scholar 

  9. Chen, G. R.; Sui, M. Q.; Wang, D. M.; Wang, S. P.; Jung, J.; Moon, P.; Adam, S.; Watanabe, K.; Taniguchi, T.; Zhou, S. Y. et al. Emergence of tertiary Dirac points in graphene Moiré superlattices. Nano Lett. 2017, 17, 3576–3581.

    CAS  Google Scholar 

  10. Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; **, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

    Google Scholar 

  11. Javed, M. S.; Zhang, X. F.; Ali, S.; Mateen, A.; Idrees, M.; Sajjad, M.; Batool, S.; Ahmad, A.; Imran, M.; Najam, T. et al. Heterostructured bimetallic-sulfide@layered Ti3C2Tx-MXene as a synergistic electrode to realize high-energy-density aqueous hybrid-supercapacitor. Nano Energy 2022, 101, 107624.

    CAS  Google Scholar 

  12. Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011, 11, 2396–2399.

    CAS  Google Scholar 

  13. Jawaid, A.; Hassan, A.; Neher, G.; Nepal, D.; Pachter, R.; Kennedy, W. J.; Ramakrishnan, S.; Vaia, R. A. Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 2021, 15, 2771–2777.

    CAS  Google Scholar 

  14. Yin, J. J.; Wei, K.; Zhang, J. X.; Liu, S. D.; Wang, X. L.; Wang, X. M.; Zhang, Q. R.; Qin, Z. H.; Jiao, T. F. MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Rep. Phys. Sci. 2022, 3, 100893.

    CAS  Google Scholar 

  15. Wang, X. M.; Wang, X. L.; Yin, J. J.; Li, N.; Zhang, Z. L.; Xu, Y. W.; Zhang, L. X.; Qin, Z. H.; Jiao, T. F. Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor. Compos. Part B Eng. 2022, 241, 110052.

    CAS  Google Scholar 

  16. Ming, F. W.; Liang, H. F.; Huang, G.; Bayhan, Z.; Alshareef, H. N. MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 2021, 33, 2004039.

    CAS  Google Scholar 

  17. Javed, M. S.; Shah, S. S. A.; Najam, T.; Siyal, S. H.; Hussain, S.; Saleem, M.; Zhao, Z. J.; Mai, W. J. Achieving high-energy density and superior cyclic stability in flexible and lightweight pseudocapacitor through synergic effects of binder-free CoGa2O4 2D-hexagonal nanoplates. Nano Energy 2020, 77, 105276.

    CAS  Google Scholar 

  18. Natu, V.; Hart, J. L.; Sokol, M.; Chiang, H.; Taheri, M. L.; Barsoum, M. W. Edge cap** of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem., Int. Ed. 2019, 58, 12655–12660.

    CAS  Google Scholar 

  19. Im, J. K.; Sohn, E. J.; Kim, S.; Jang, M.; Son, A.; Zoh, K. D.; Yoon, Y. Review of MXene-based nanocomposites for photocatalysis. Chemosphere 2021, 270, 129478.

    CAS  Google Scholar 

  20. Lim, K. R. G.; Handoko, A. D.; Johnson, L. R.; Meng, X.; Lin, M.; Subramanian, G. S.; Anasori, B.; Gogotsi, Y.; Vojvodic, A.; Seh, Z. W. 2H-MoS2 on Mo2CTx MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution. ACS Nano 2020, 14, 16140–16155.

    CAS  Google Scholar 

  21. Han, M. K.; Liu, Y. Q.; Rakhmanov, R.; Israel, C.; Ta**, M. A. S.; Friedman, G.; Volman, V.; Hoorfar, A.; Dandekar, K. R.; Gogotsi, Y. Solution-processed Ti3C2Tx MXene antennas for radio-frequency communication. Adv. Mater. 2021, 33, 2003225.

    CAS  Google Scholar 

  22. Gencer, A.; Aydin, S.; Surucu, O.; Wang, X. T.; Deligoz, E.; Surucu, G. Enhanced hydrogen storage of a functional material: Hf2CF2 MXene with Li decoration. Appl. Surf. Sci. 2021, 551, 149484.

    CAS  Google Scholar 

  23. Li, L.; Wen, J.; Zhang, X. T. Progress of two-dimensional Ti3C2Tx in supercapacitors. ChemSusChem 2020, 13, 1296–1329.

    CAS  Google Scholar 

  24. Li, J. Y.; Zhang, W.; Ge, X.; Lu, M.; Xue, X. X.; Wang, Z. Z.; Yue, N. L.; Zhang, J. K.; Lang, X. Y.; Jiang, Q. et al. Etching-courtesy NH4+ pre-intercalation enables highly-efficient Li+ storage of MXenes via the renaissance of interlayer redox. J. Energy Chem. 2022, 72, 26–32.

    CAS  Google Scholar 

  25. Naguib, M.; Saito, T.; Lai, S.; Rager, M. S.; Aytug, T.; Paranthaman, M. P.; Zhao, M. Q.; Gogotsi, Y. Ti3C2Tx (MXene)-polyacrylamide nanocomposite films. RSC Adv. 2016, 6, 72069–72073.

    CAS  Google Scholar 

  26. Garg, R.; Agarwal, A.; Agarwal, M. Effect of vanadium do** on MXene-based supercapacitor. J. Mater. Sci. Mater. Electron. 2021, 32, 22046–22059.

    CAS  Google Scholar 

  27. Lu, M.; Han, W. J.; Li, H. B.; Zhang, W.; Zhang, B. S. There is plenty of space in the MXene layers: The confinement and fillings. J. Energy Chem. 2020, 45, 344–363.

    Google Scholar 

  28. Ussia, M.; Bruno, E.; Spina, E.; Vitalini, D.; Pellegrino, G.; Ruffino, F.; Privitera, V.; Carroccio, S. C. Freestanding photocatalytic materials based on 3D graphene and polyporphyrins. Sci. Rep. 2018, 5, 5001.

    Google Scholar 

  29. Ghasali, E.; Orooji, Y.; Azarniya, A.; Alizadeh, M.; Kazem-Zad, M.; TouradjEbadzadeh. Production of V2C MXene using a repetitive pattern of V2AlC MAX phase through microwave heating of Al-V2O5-C system. Appl. Surf. Sci. 2021, 542, 148538.

    CAS  Google Scholar 

  30. Wu, Q.; Li, C. S.; Tang, H. Surface characterization and growth mechanism of laminated Ti3SiC2 crystals fabricated by hot isostatic pressing. Appl. Surf. Sci. 2010, 256, 6986–6990.

    CAS  Google Scholar 

  31. Wu, Q.; Li, P. F.; Wang, Y. H.; Wu, F. F. Construction and electrochemical energy storage performance of free-standing hexagonal Ti3C2 film for flexible supercapacitor. Appl. Surf. Sci. 2022, 593, 153380.

    CAS  Google Scholar 

  32. Lu, J.; Persson, I.; Lind, H.; Palisaitis, J.; Li, M.; Li, Y.; Chen, K.; Zhou, J.; Du, S.; Chai, Z. et al. Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations. Nanoscale Adv. 2019, 1, 3680–3685.

    CAS  Google Scholar 

  33. Wu, Q.; Wang, Y. H.; Li, P. F.; Chen, S. H.; Wu, F. F. Electrochemical performance and charge storage mechanism of few-layer MXene titanium carbide for supercapacitors. J. Electrochem. Soc. 2021, 168, 090549.

    CAS  Google Scholar 

  34. Wu, Q.; Wang, Y. H.; Li, P. F.; Chen, S. H.; Wu, F. F. MXene titanium carbide synthesized by hexagonal titanium aluminum carbide with high specific capacitance and low impedance. Dalton Trans. 2022, 51, 3263–3274.

    CAS  Google Scholar 

  35. Firestein, K. L.; von Treifeldt, J. E.; Kvashnin, D. G.; Fernando, J. F. S.; Zhang, C.; Kvashnin, A. G.; Podryabinkin, E. V.; Shapeev, A. V.; Siriwardena, D. P.; Sorokin, P. B. et al. Young’s modulus and tensile strength of Ti3C2 MXene nanosheets as revealed by in situ TEM probing, AFM nanomechanical map**, and theoretical calculations. Nano Lett. 2020, 20, 5900–5908.

    CAS  Google Scholar 

  36. Wu, Q.; Ren, Y. Q.; Li, P. F.; Wang, Y. H.; Yang, Z. X.; Qu, K. K.; Qi, G. C.; Chen, S. H.; Wu, F. F. MXene titanium carbide with high specific capacitance fabricated by microwave-assisted selective etching. Appl. Phys. A 2021, 127, 360.

    CAS  Google Scholar 

  37. Hart, J. L.; Hantanasirisakul, K.; Lang, A. C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J. T.; May, S. J.; Gogotsi, Y.; Taheri, M. L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522.

    CAS  Google Scholar 

  38. Zhang, W.; Sui, M. L.; Zhou, Y. Z.; Guo, J. D.; He, G. H.; Li, D. X. Evolution of microstructure in TiC/NiCr cermet induced by electropulsing. J. Mater. Res. 2003, 18, 1543–1550.

    CAS  Google Scholar 

  39. Ahn, S. J.; Moon, P.; Kim, T. H.; Kim, H. W.; Shin, H. C.; Kim, E. H.; Cha, H. W.; Kahng, S. J.; Kim, P.; Koshino, M. et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science 2018, 361, 782–786.

    CAS  Google Scholar 

  40. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    CAS  Google Scholar 

  41. Collini, P.; Kota, S.; Dillon, A. D.; Barsoum, M. W.; Fafarman, A. T. Electrophoretic deposition of two-dimensional titanium carbide (MXene) thick films. J. Electrochem. Soc. 2017, 164, D573–D580.

    CAS  Google Scholar 

  42. Javed, M. S.; Lei, H.; Wang, Z. L.; Liu, B. T.; Cai, X.; Mai, W. J. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 2020, 70, 104573.

    CAS  Google Scholar 

  43. Li, L.; Zhang, M. Y.; Zhang, X. T.; Zhang, Z. G. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J. Power Sources 2017, 364, 234–241.

    CAS  Google Scholar 

  44. Javed, M. S.; Mateen, A.; Ali, S.; Zhang, X. F.; Hussain, I.; Imran, M.; Shah, S. S. A.; Han, W. H. The emergence of 2D MXenes based Zn-ion batteries: Recent development and prospects. Small 2022, 18, 2201989.

    CAS  Google Scholar 

  45. Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

    CAS  Google Scholar 

  46. Vaghasiya, J. V.; Mayorga-Martinez, C. C.; Sofer, Z.; Pumera, M. MXene-based flexible supercapacitors: Influence of an organic ionic conductor electrolyte on the performance. ACS Appl. Mater. Interfaces 2020, 12, 53039–53048.

    CAS  Google Scholar 

  47. Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969.

    CAS  Google Scholar 

  48. Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

    CAS  Google Scholar 

  49. Wu, Q.; Wang, Y. H.; Li, P. F.; Chen, S. H.; Wu, F. F. Microwave-assisted synthesis of few-layered MXene Ti3C2 with high specific capacitance and low impedance for supercapacitor. Appl. Phys. A 2021, 127, 822.

    CAS  Google Scholar 

  50. Li, L.; Zhang, N.; Zhang, M. Y.; Zhang, X. T.; Zhang, Z. G. Flexible Ti3C2Tx/PEDOT:PSS films with outstanding volumetric capacitance for asymmetric supercapacitors. Dalton Trans. 2019, 48, 1747–1756.

    CAS  Google Scholar 

  51. Javed, M. S.; Lei, H.; Shah, H. U.; Asim, S.; Raza, R.; Mai, W. J. Achieving high rate and high energy density in an all-solid-state flexible asymmetric pseudocapacitor through the synergistic design of binder-free 3D ZnCo2O4 nano polyhedra and 2D layered Ti3C2Tx-MXenes. J. Mater. Chem. A 2019, 7, 24543–24556.

    CAS  Google Scholar 

  52. Liu, W. H.; Wang, Z. Q.; Su, Y. L.; Li, Q. W.; Zhao, Z. G.; Geng, F. X. Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Adv. Energy Mater. 2017, 7, 1602834.

    Google Scholar 

  53. Rakhi, R. B.; Ahmed, B.; Anjum, D.; Alshareef, H. N. Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl. Mater. Interfaces 2016, 8, 18806–18814.

    CAS  Google Scholar 

  54. Navarro-Suárez, A. M.; van Aken, K. L.; Mathis, T.; Makaryan, T.; Yan, J.; Carretero-González, J.; Rojo, T.; Gogotsi, Y. Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochim. Acta 2018, 259, 752–761.

    Google Scholar 

  55. Pan, Z. H.; Cao, F.; Hu, X.; Ji, X. H. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 8984–8992.

    CAS  Google Scholar 

  56. Guo, J.; Zhao, Y. Y.; Liu, A. M.; Ma, T. L. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochim. Acta 2019, 305, 164–174.

    CAS  Google Scholar 

  57. Yu, L. Y.; Hu, L. F.; Anasori, B.; Liu, Y. T.; Zhu, Q. Z.; Zhang, P.; Gogotsi, Y.; Xu, B. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 2018, 3, 1597–1603.

    CAS  Google Scholar 

  58. Li, X. L.; Zhu, J. F.; Zhang, B.; Jiao, Y. H.; Huang, J. H.; Wang, F. X. Manganese dioxide nanosheets decorated on MXene (Ti3C2Tx) with enhanced performance for asymmetric supercapacitors. Ceram. Int. 2021, 47, 12211–12220.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC, Nos. 51971106 and 52272209), Basic Scientific Research Project of Higher Education Department of Liaoning Province (No. LJKMZ20220961), and the Program for Liaoning Distinguished Professor.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiong Wu, Muhammad Sufyan Javed, Lu Li or Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Xue, Y., Chao, S. et al. Moiré-superlattice MXenes enabled ultra-stable K-ion storage in neutral electrolyte. Nano Res. 16, 5006–5017 (2023). https://doi.org/10.1007/s12274-023-5437-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5437-0

Keywords

Navigation